首页> 外文期刊>Advanced energy materials >Atomic Layer Deposition as a General Method Turns any 3D-Printed Electrode into a Desired Catalyst: Case Study in Photoelectrochemisty
【24h】

Atomic Layer Deposition as a General Method Turns any 3D-Printed Electrode into a Desired Catalyst: Case Study in Photoelectrochemisty

机译:作为一般方法的原子层沉积将任何3D印刷电极转化为所需的催化剂:在光电化学中的案例研究

获取原文
获取原文并翻译 | 示例
           

摘要

3D-printing technologies have begun to revolutionize many manufacturing processes, however, there are still significant limitations that are yet to be overcome. In particular, the material from which the products are fabricated is limited by the 3D-printing material precursor. Particularly, for photoelectrochemical (PEC) energy applications, the as-printed electrodes can be used as is, or modified by postfabrication processes, e.g., electrochemical deposition or anodization, to create active layers on the 3D-printed electrodes. However, the as-printed electrodes are relatively inert for various PEC energy applications, and the aforementioned postfabrication processing techniques do not offer layer conformity or control at the angstrom ngstromano level. Herein, for the first time, atomic layer deposition (ALD) is utilized in conjunction with metal 3D-printing to create active electrodes. To illustrate the proof-of-concept, TiO2 is deposited by ALD onto stainless steel 3D-printed electrodes and subsequently investigated as a photoanode for PEC water oxidation. Furthermore, by tuning the TiO2 thickness by ALD, the activity can be optimized. By combining 3D-printing and ALD, instead of other metal deposition techniques, i.e., sputtering, rapid prototyping of electrodes with controllable thickness of the desired material onto an as-printed electrodes with any porosity can be achieved that can benefit a multitude of energy applications.
机译:3D-Printing技术已经开始彻底改变许多制造过程,然而,仍有很大的限制尚未克服。特别地,制造产品的材料受3D印刷材料前体的限制。特别地,对于光电化学(PEC)能量应用,可以根据后休息过程,例如电化学沉积或阳极氧化来使用原样或修改作为印刷电极,以在3D印刷电极上产生有源层。然而,对于各种PEC能量应用,作为印刷电极相对惰性,并且上述后休息处理技术在埃克斯特罗姆/纳米水平下不提供层符合性或控制。这里,首次,原子层沉积(ALD)与金属3D打印结合使用以形成有源电极。为了说明概念证明,通过ALD沉积TiO 2在不锈钢3D印刷电极上,随后作为PEC水氧化的光电码。此外,通过通过ALD调节TiO2厚度,可以优化活性。通过组合3D打印和ALD,代替其他金属沉积技术,即溅射,具有可控材料厚度的电极的快速原型设计在具有任何孔隙率的作为印刷电极上,可以有利于多种能量应用。 。

著录项

  • 来源
    《Advanced energy materials》 |2019年第26期|1900994.1-1900994.10|共10页
  • 作者单位

    Univ Chem & Technol Prague Dept Inorgan Chem Ctr Adv Funct Nanorobots Tech 5 Prague 16628 6 Czech Republic;

    Univ Chem & Technol Prague Dept Inorgan Chem Ctr Adv Funct Nanorobots Tech 5 Prague 16628 6 Czech Republic;

    Univ Chem & Technol Prague Dept Inorgan Chem Ctr Adv Funct Nanorobots Tech 5 Prague 16628 6 Czech Republic;

    Univ Chem & Technol Prague Dept Inorgan Chem Ctr Adv Funct Nanorobots Tech 5 Prague 16628 6 Czech Republic;

    Univ Chem & Technol Prague Dept Inorgan Chem Ctr Adv Funct Nanorobots Tech 5 Prague 16628 6 Czech Republic|Yonsei Univ Dept Chem & Biomol Engn 50 Yonsei Ro Seoul 03722 South Korea|Brno Univ Technol Cent European Inst Technol Future Energy & Innovat Lab Purkynova 656-123 CZ-61600 Brno Czech Republic;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    3D-printing; atomic layer deposition; photoelectrochemical water splitting; TiO2;

    机译:3D印刷;原子层沉积;光电化学水分裂;TiO2;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号