首页> 外文期刊>Advanced Functional Materials >Enhanced Performance of P2-Na-0.66(Mn0.54Co0.13Ni0.13)O-2 Cathode for Sodium-Ion Batteries by Ultrathin Metal Oxide Coatings via Atomic Layer Deposition
【24h】

Enhanced Performance of P2-Na-0.66(Mn0.54Co0.13Ni0.13)O-2 Cathode for Sodium-Ion Batteries by Ultrathin Metal Oxide Coatings via Atomic Layer Deposition

机译:原子层沉积超薄金属氧化物涂层增强P2-Na-0.66(Mn0.54Co0.13Ni0.13)O-2钠离子电池阴极的性能

获取原文
获取原文并翻译 | 示例
       

摘要

Sodium-ion batteries are widely considered as promising energy storage systems for large-scale applications, but their relatively low energy density hinders further practical applications. Developing high-voltage cathode materials is an effective approach to increase the overall energy density of sodium-ion batteries. When cut-off voltage is elevated over 4.3 V, however, the cathode becomes extremely unstable due to structural transformations as well as metal dissolution into the electrolytes. In this work, the cyclic stability of P2-Na-0.66(Mn0.54Co0.13Ni0.13)O-2 (MCN) electrode at a cut-off voltage of 4.5 V is successfully improved by using ultrathin metal oxide surface coatings (Al2O3, ZrO2, and TiO2) deposited by an atomic layer deposition technique. The MCN electrode coated with the Al2O3 layer exhibits higher capacity retention among the MCN electrodes. Moreover, the rate performance of the MCN electrode is greatly improved by the metal oxide coatings in the order of TiO2 < Al2O3 < ZrO2, due to increased fracture toughness and electrical conductivity of the metal oxide coating layers. A ZrO2-coated MCN electrode shows a discharge capacity of 83 mAh g(-1) at 2.4 A g(-1), in comparison to 61 mAh g(-1) for a pristine MCN electrode. Cyclic voltammetry and electrochemical impedance analysis disclose the reduced charge transfer resistance from 1421 to 760.2 Omega after cycles, suggesting that the metal oxide coating layer can effectively minimize the undesirable phase transition, buffer inherent stress and strain between the binder, cathode, and current collector, and avoid volumetric changes, thus increasing the cyclic stability of the MCN electrode.
机译:钠离子电池被广泛认为是用于大规模应用的有前途的能量存储系统,但是它们相对较低的能量密度阻碍了进一步的实际应用。开发高压阴极材料是增加钠离子电池整体能量密度的有效方法。但是,当截止电压升高到4.3 V以上时,由于结构转变以及金属溶解到电解质中,阴极变得极为不稳定。在这项工作中,通过使用超薄金属氧化物表面涂层(Al2O3),成功改善了P2-Na-0.66(Mn0.54Co0.13Ni0.13)O-2(MCN)电极在4.5 V截止电压下的循环稳定性。 ,ZrO2和TiO2)通过原子层沉积技术沉积。涂覆有Al 2 O 3层的MCN电极在MCN电极之间表现出更高的容量保持率。此外,由于金属氧化物涂层的断裂韧性和导电性提高,因此金属氧化物涂层以TiO 2 <Al 2 O 3 <ZrO 2的顺序极大地改善了MCN电极的速率性能。与原始MCN电极的61 mAh g(-1)相比,涂覆ZrO2的MCN电极在2.4 A g(-1)时的放电容量为83 mAh g(-1)。循环伏安法和电化学阻抗分析表明,循环后电荷转移电阻从1421降低到760.2Ω,这表明金属氧化物涂层可以有效地减少不良的相变,缓冲粘合剂,阴极和集电器之间的固有应力和应变,并避免体积变化,从而增加了MCN电极的循环稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号