首页> 外文期刊>Advanced Functional Materials >Platelet-in-Box Colloidal Quantum Wells: CdSe/CdS@CdS Core/Crown@Shell Heteronanoplatelets
【24h】

Platelet-in-Box Colloidal Quantum Wells: CdSe/CdS@CdS Core/Crown@Shell Heteronanoplatelets

机译:盒装血小板胶体量子阱:CdSe / CdS @ CdS核/冠@壳杂纳米血小板

获取原文
获取原文并翻译 | 示例
           

摘要

Here, the CdSe/CdS@CdS core/crown@shell heterostructured nanoplatelets (NPLs) resembling a platelet-in-box structure are developed and successfully synthesized. It is found that the core/crown@shell NPLs exhibit consistently substantially improved photoluminescence quantum yield compared to the core@shell NPLs regardless of their CdSe-core size, CdS-crown size, and CdS-shell thickness. This enhancement in quantum yield is attributed to the passivation of trap sites resulting from the critical peripheral growth with laterally extending CdS-crown layer before the vertical shell growth. This is also verified with the disappearance of the fast nonradiative decay component in the core/crown NPLs from the time-resolved fluorescence spectroscopy. When compared to the core@shell NPLs, the core/crown@shell NPLs exhibit relatively symmetric emission behavior, accompanied with suppressed lifetime broadening at cryogenic temperatures, further suggesting the suppression of trap sites. Moreover, constructing both the CdS-crown and CdS-shell regions, significantly enhanced absorption cross-section is achieved. This, together with the suppressed Auger recombination, enables the achievement of the lowest threshold amplified spontaneous emission (approximate to 20 mu J cm(-2)) from the core/crown@shell NPLs among all different architectures of NPLs. These findings indicate that carefully heterostructured NPLs will play a critical role in building high-performance colloidal optoelectronic devices, which may even possibly challenge their traditional epitaxially grown thin-film based counterparts.
机译:在这里,CdSe / CdS @ CdS核/冠壳壳状纳米结构(NPLs)类似于盒中的血小板结构被开发并成功地合成。发现与核壳NPL相比,核/冠壳NPL表现出持续显着提高的光致发光量子产率,而不管其CdSe-核尺寸,CdS-冠尺寸和CdS-壳厚度如何。量子产率的这种提高归因于陷阱位点的钝化,该陷阱位点是由于临界周边生长以及在垂直壳生长之前横向延伸的CdS-冠层而导致的。时间分辨荧光光谱法还证实了核心/冠状非专利文献中快速非辐射衰变成分的消失。当与核壳型不良贷款相比时,核/冠壳型不良贷款表现出相对对称的发射行为,并在低温下抑制了寿命的展宽,进一步暗示了捕集位点的抑制。此外,通过构建CdS冠和CdS壳区域,可以显着提高吸收截面。这与抑制的俄歇重组一起,能够在所有不同的NPL体系结构中从核心/冠壳NPL实现最低阈值放大的自发发射(大约20μJ cm(-2))。这些发现表明,精心设计的异质NPL将在构建高性能胶体光电器件中发挥关键作用,这甚至有可能挑战其传统的外延生长的基于薄膜的对应器件。

著录项

  • 来源
    《Advanced Functional Materials》 |2016年第21期|3570-3579|共10页
  • 作者单位

    Bilkent Univ, UNAM Inst Mat Sci & Nanotechnol, Dept Phys, Dept Elect & Elect Engn, TR-06800 Ankara, Turkey;

    Bilkent Univ, UNAM Inst Mat Sci & Nanotechnol, Dept Phys, Dept Elect & Elect Engn, TR-06800 Ankara, Turkey;

    Bilkent Univ, UNAM Inst Mat Sci & Nanotechnol, Dept Phys, Dept Elect & Elect Engn, TR-06800 Ankara, Turkey;

    Bilkent Univ, UNAM Inst Mat Sci & Nanotechnol, Dept Phys, Dept Elect & Elect Engn, TR-06800 Ankara, Turkey|Abant Izzet Baysal Univ, Dept Phys, TR-14280 Bolu, Turkey;

    Bilkent Univ, UNAM Inst Mat Sci & Nanotechnol, Dept Phys, Dept Elect & Elect Engn, TR-06800 Ankara, Turkey;

    Bilkent Univ, UNAM Inst Mat Sci & Nanotechnol, Dept Phys, Dept Elect & Elect Engn, TR-06800 Ankara, Turkey|Nanyang Technol Univ, Sch Elect & Elect Engn, Sch Phys & Mat Sci, Sch Mat Sci & Nanotechnol,Luminous Ctr Excellence, Singapore 639798, Singapore;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号