首页> 外文期刊>Advanced Functional Materials >Electronic Structure of Low-Temperature Solution-Processed Amorphous Metal Oxide Semiconductors for Thin-Film Transistor Applications
【24h】

Electronic Structure of Low-Temperature Solution-Processed Amorphous Metal Oxide Semiconductors for Thin-Film Transistor Applications

机译:薄膜晶体管应用低温固溶处理的非晶态金属氧化物半导体的电子结构

获取原文
获取原文并翻译 | 示例
           

摘要

The electronic structure of low temperature, solution-processed indium-zinc oxide thin-film transistors is complex and remains insufficiently understood. As commonly observed, high device performance with mobility >1 cm~2 V~(-1) s~(-1) is achievable after annealing in air above typically 250 ℃ but performance decreases rapidly when annealing temperatures ≤200 ℃ are used. Here, the electronic structure of low temperature, solution-processed oxide thin films as a function of annealing temperature and environment using a combination of X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and photothermal deflection spectroscopy is investigated. The drop-off in performance at temperatures ≤200 ℃ to incomplete conversion of metal hydroxide species into the fully coordinated oxide is attributed. The effect of an additional vacuum annealing step, which is beneficial if performed for short times at low temperatures, but leads to catastrophic device failure if performed at too high temperatures or for too long is also investigated. Evidence is found that during vacuum annealing, the workfunction increases and a large concentration of sub-bandgap defect states (re)appears. These results demonstrate that good devices can only be achieved in low temperature, solution-processed oxides if a significant concentration of acceptor states below the conduction band minimum is compensated or passivated by shallow hydrogen and oxygen vacancy-induced donor levels.
机译:低温,溶液处理的铟锌氧化物薄膜晶体管的电子结构很复杂,仍然缺乏足够的了解。通常观察到,在通常高于250℃的空气中退火后,可以实现迁移率> 1 cm〜2 V〜(-1)s〜(-1)的高器件性能,但是当使用退火温度≤200℃时,性能会迅速下降。在此,结合使用X射线光电子能谱,紫外光电子能谱和光热偏转能谱,研究了低温,固溶处理的氧化物薄膜随退火温度和环境变化的电子结构。归因于在≤200℃的温度下性能下降,这是由于金属氢氧化物不完全转化为完全配位的氧化物。还研究了额外的真空退火步骤的效果,该步骤如果在低温下短时间执行将是有益的,但是如果在太高的温度下或执行时间过长则会导致灾难性的设备故障。有证据表明,在真空退火过程中,功函数增加,并且出现了较大的亚带隙缺陷状态(重新)集中。这些结果表明,只有通过低于氢和氧的空位诱导的施主能级来补偿或钝化大量的低于导带最小值的受主态,才能在低温,固溶处理的氧化物中获得良好的器件。

著录项

  • 来源
    《Advanced Functional Materials》 |2015年第12期|1873-1885|共13页
  • 作者单位

    Cavendish Laboratory 19 JJ Thomson Avenue, CB3 OHE Cambridge, UK;

    Cavendish Laboratory 19 JJ Thomson Avenue, CB3 OHE Cambridge, UK;

    Cavendish Laboratory 19 JJ Thomson Avenue, CB3 OHE Cambridge, UK,Centre for Advanced Materials (CAM), Im Neuenheimer Feld 227, 69120 Heidelberg, Germany;

    Cavendish Laboratory 19 JJ Thomson Avenue, CB3 OHE Cambridge, UK;

    Cavendish Laboratory 19 JJ Thomson Avenue, CB3 OHE Cambridge, UK;

    Cavendish Laboratory 19 JJ Thomson Avenue, CB3 OHE Cambridge, UK,Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland;

    Cavendish Laboratory 19 JJ Thomson Avenue, CB3 OHE Cambridge, UK,Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland;

    Cavendish Laboratory 19 JJ Thomson Avenue, CB3 OHE Cambridge, UK;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号