首页> 外文期刊>Advanced Functional Materials >Novel Atmospheric Growth Technique to Improve Both Light Absorption and Charge Collection in ZnO/Cu_2O Thin Film Solar Cells
【24h】

Novel Atmospheric Growth Technique to Improve Both Light Absorption and Charge Collection in ZnO/Cu_2O Thin Film Solar Cells

机译:改善ZnO / Cu_2O薄膜太阳能电池的光吸收和电荷收集的新型大气生长技术

获取原文
获取原文并翻译 | 示例
           

摘要

In low temperature grown ZnO/Cu_2O solar cells, there is a discrepancy between collection length and depletion width in the Cu_2O which makes the simultaneous achievement of efficient charge collection and high open-circuit voltage problematic. This is addressed in this study by fabricating ZnO/Cu_2O/Cu_2O back surface field devices using an atmospheric atomic layer deposition (AALD) printing method to grow a sub-200-nm Cu_2O film on top of electrodeposited ZnO and Cu_2O layers. The AALD Cu_2O has a carrier concentration around 2 orders of magnitude higher than the electrode-posited Cu_2O, allowing the electrodeposited Cu_2O layer thickness in a back surface field cell to be reduced from 3 μm to the approximate charge collection length, 1 μm, while still allowing a high potential to be built into the cell. The dense conformal nature of the AALD layer also blocks shunt pathways allowing the voltage enhancement to be maintained. The thinner cell design reduces recombination losses and increases charge collection from both incident light and light reflected off the back electrode. Using this design, a short circuit current density of 6.32 mA cm~(-2) is achieved-the highest reported J_(sc) for an atmospherically deposited ZnO/Cu_2O device to date.
机译:在低温生长的ZnO / Cu_2O太阳能电池中,Cu_2O中的收集长度和耗尽宽度之间存在差异,这使得同时实现高效电荷收集和高开路电压成为问题。通过使用大气原子层沉积(AALD)印刷方法制造ZnO / Cu_2O / Cu_2O背面场器件来在电沉积的ZnO和Cu_2O层上生长200 nm以下的Cu_2O膜,可以解决这一问题。 AALD Cu_2O的载流子浓度比电极沉积的Cu_2O高约2个数量级,从而使背面场电池中电沉积的Cu_2O层厚度从3μm减小到近似的电荷收集长度1μm,同时仍然允许将高潜力内置到电池中。 AALD层的稠密共形性质还阻塞了分流路径,从而可以保持电压的增加。较薄的电池设计减少了重组损失,并增加了入射光和背电极反射光的电荷收集。使用这种设计,可以实现6.32 mA cm〜(-2)的短路电流密度,这是迄今为止在大气中沉积的ZnO / Cu_2O器件报道的最高J_(sc)。

著录项

  • 来源
    《Advanced Functional Materials》 |2013年第27期|3413-3419|共7页
  • 作者单位

    Department of Materials Science and Metallurgy University of Cambridge Pembroke St., Cambridge CB2 3QZ, UK;

    Department of Materials Science and Metallurgy University of Cambridge Pembroke St., Cambridge CB2 3QZ, UK;

    Department of Materials Science and Metallurgy University of Cambridge Pembroke St., Cambridge CB2 3QZ, UK;

    Department of Materials Science and Metallurgy University of Cambridge Pembroke St., Cambridge CB2 3QZ, UK;

    Cavendish Laboratory University of Cambridge Cambridge, UK;

    Department of Materials Science and Metallurgy University of Cambridge Pembroke St., Cambridge CB2 3QZ, UK;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号