首页> 外文期刊>Advances in space research >Fault tolerant small satellite attitude control using adaptive non-singular terminal sliding mode
【24h】

Fault tolerant small satellite attitude control using adaptive non-singular terminal sliding mode

机译:使用自适应非奇异终端滑模的容错小卫星姿态控制

获取原文
获取原文并翻译 | 示例
           

摘要

The Attitude Control System (ACS) plays a pivotal role in the whole performance of the spacecraft on the orbit; therefore, it is vitally important to design the control system with the performance of rapid response, high control precision and insensitive to external perturbations. In the first place, this paper proposes two adaptive nonlinear control algorithms based on the sliding mode control (SMC), which are designed for small satellite attitude control system. The nonlinear dynamics describing the attitude of small satellite is considered in a circle reference orbit, and the stability of the closed-loop system in the presence of external perturbations is investigated. Then, in order to account for accidental or degradation fault in satellite actuators, the fault-tolerant control schemes are presented. Hence, two adaptive fault-tolerant control laws (continuous sliding mode control and non-singular terminal sliding mode control) are developed by adopting the nonlinear analytical model to describe the system, which can guarantee global asymptotic convergence of the attitude control error with the existence of unknown external perturbations. The nonlinear hyperplane based Terminal sliding mode is introduced into the control law design; therefore, the system convergence performance improves and the control error is convergent in "finite time". As a result, the study on the non-singular terminal sliding mode control is the emphasis and the continuous sliding mode control is used to compare with the non-singular terminal sliding mode control. Meanwhile, an adaptive fuzzy algorithm has been proposed to suppress the chattering phenomenon. Moreover, several numerical examples are presented to demonstrate the efficacy of the proposed controllers by correcting for the external perturbations. Simulation results confirm that the suggested methodologies yield high control precision in control. In addition, actuator degradation, actuator stuck and actuator failure for a period of time are simulated to demonstrate the fault recovery capability of the fault tolerant controllers. The numerical results clearly demonstrate the good performance of the adaptive non-singular terminal control in the event of actuator fault compare with the continuous sliding mode control.
机译:姿态控制系统(ACS)在航天器在轨道上的整体性能中起着举足轻重的作用。因此,设计具有快速响应,高控制精度和对外部干扰不敏感的性能的控制系统至关重要。首先,本文提出了两种基于滑模控制的自适应非线性控制算法,它们是针对小型卫星姿态控制系统而设计的。在圆参考轨道上考虑了描述小卫星姿态的非线性动力学,并研究了存在外部扰动的闭环系统的稳定性。然后,为了解决卫星执行器中的偶然或降级故障,提出了容错控制方案。因此,采用非线性分析模型对系统进行描述,提出了两种自适应容错控制律(连续滑模控制和非奇异终端滑模控制),可以保证姿态控制误差存在时的全局渐近收敛。未知的外部扰动在控制律设计中引入了基于非线性超平面的终端滑模。因此,提高了系统的收敛性能,并在“有限时间内”收敛了控制误差。因此,重点研究了非奇异终端滑模控制,并将连续滑模控制与非奇异终端滑模控制进行了比较。同时,提出了一种自适应模糊算法来抑制抖动现象。此外,提出了几个数值示例,以通过校正外部扰动来证明所提出的控制器的功效。仿真结果证实了所提出的方法在控制中具有很高的控制精度。此外,还仿真了执行器在一段时间内的退化,执行器卡住和执行器故障,以证明容错控制器的故障恢复能力。数值结果清楚地表明,与连续滑模控制相比,在执行器故障的情况下,自适应非奇异终端控制具有良好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号