...
首页> 外文期刊>Aerospace science and technology >Applied flight dynamics modeling and stability analysis of a nonlinear time-periodic mono-wing aerial vehicle
【24h】

Applied flight dynamics modeling and stability analysis of a nonlinear time-periodic mono-wing aerial vehicle

机译:应用飞行动力学建模与非线性时间周期单翼空中车辆的稳定性分析

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents fly-ability, trim-ability, stability, and control ability of a mono-wing aerial vehicle as an under-actuated multi-body system. A nonlinear mathematical model of this vehicle with translational and rotational movements is developed. Based on early simulations, a conceptual prototype of the monowing is initially designed and constructed. A comprehensive nonlinear simulation is then performed by modeling aerodynamic forces and moments using the Blade Element Momentum (BEM) theory. Modeling and simulation are validated against experimental data to satisfy research needs. Twenty-three efficient dynamic parameters of the mono-wing are studied in ninety-seven simulation scenarios. Robustness against external disturbances in various trim conditions is examined. Flight test experiments reveal not only fly-ability but also high attitude stability in hovering-climb flight despite the imprecise model. This vehicle has a complex dynamic behavior that urges precise identification to reach stable flight performance. The model helps to achieve a deeper understanding of the flight characteristics of such vehicles. Wing area and incidence angle, position vectors of the aerodynamic center and rotation center, and the moment of inertia tensors are identified to be the most significant parameters on the flight stability of this vehicle. It is observed that the mono-wing has multiple trim conditions and is robust against external disturbances regardless of the control surfaced deflection, the center of gravity position, or even the wing geometry, because of the rotational stability and aerodynamic performance. Moreover, it is found both by simulation and experiment that although this vehicle is not full-state controllable and observable, it can be stabilized and guided to follow the desired trajectory and perform complex flight maneuvers. (C) 2020 Elsevier Masson SAS. All rights reserved.
机译:本文介绍了单翼空中车辆作为驱动的多体系系统单翼空中飞行器的飞行能力,修剪能力,稳定性和控制能力。开发了具有平移和旋转运动的该车辆的非线性数学模型。基于早期仿真,最初设计和构建了一系列自我的概念原型。然后通过使用叶片元件动量(BEM)理论建模空气动力力和矩来进行全面的非线性模拟。模拟和模拟是针对实验数据验证以满足研究需求的验证。在九十七种模拟场景中研究了单翼的二十三个高效动态参数。检查了各种修剪条件下对外部干扰的鲁棒性。飞行试验实验不仅透露了飞行能力,而且虽然是不精确的模型,但仍然存在悬停攀登航班的高姿态稳定性。该车辆具有复杂的动态行为,促使精确的识别达到稳定的飞行性能。该模型有助于实现对此类车辆的飞行特性的更深入了解。翼面积和入射角,空气动力学中心和旋转中心的位置矢量,以及惯性张力的时刻是对该载体飞行稳定性的最重要参数。观察到,由于旋转稳定性和空气动力学性能,无论控制表面偏转,重心位置,重心偏转,重心位置,甚至机翼几何形状,单翼都具有多个修整条件,并且对外部干扰牢固。此外,它通过模拟和实验发现,尽管该车辆不是全状态可控和可观察,但它可以稳定并引导遵循所需的轨迹并进行复杂的飞行机动。 (c)2020 Elsevier Masson SAS。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号