...
首页> 外文期刊>Atmospheric research >Global vertically resolved aerosol direct radiation effect from three years of CALIOP data using the FORTH radiation transfer model
【24h】

Global vertically resolved aerosol direct radiation effect from three years of CALIOP data using the FORTH radiation transfer model

机译:使用FORTH辐射传输模型从三年CALIOP数据获得的全球垂直解析的气溶胶直接辐射效应

获取原文
获取原文并翻译 | 示例
           

摘要

We use global aerosol optical depth data from CALIOP with a radiation transfer model to investigate the aerosol direct radiative effect (DRE) and its sensitivity to the aerosol vertical resolution. Our study spans three years (2007-2009) and uses cloud data from ISCCP D2 to take into account cloud-aerosol radiative interactions on a monthly 2.5 degrees x 2.5 degrees resolution. The three-year global average all-sky aerosol DRE at the surface, in the atmosphere, and at the top of atmosphere (TOA) was calculated to be -4.23, 2.40, and - 1.83 Wm(-2), respectively. As expected, local DREs and atmospheric heating rates are shown to vary significantly. The largest magnitudes of the DREs are observed in regions with heavy aerosol load consisting of both natural and anthropogenic particles, such as desert dust, biomass burning and urban/industrial pollution. At TOA the aerosol effect is generally of negative sign, though a planetary heating effect is found in regions characterized by both absorbing aerosol and large surface albedo, such as deserts. Clouds scatter and absorb solar radiation, which generally decreases the aerosol cooling at the surface and the aerosol warming in the atmosphere. However, the latter effect is attenuated due to the enhancement of radiation absorption by the above-cloud aerosols. As a result, clouds decrease the aerosol TOA (planetary) cooling, and sometimes even cause aerosol warming (e.g. over the tropical South Atlantic). The cloud effect on the aerosol DRE depends strongly on the aerosol optical properties and the aerosol load fraction above low clouds. Comparing the effect of the observed aerosol vertical profile against an exponentially decreasing profile, we find a small sensitivity for the surface DRE, but larger for the atmospheric column and the top of the atmosphere. Under all-sky conditions, when continental aerosols are lifted higher in the atmosphere, the outgoing shortwave radiation at TOA decreases, due to the increase of UV and visible radiation absorption by particles while higher oceanic aerosols generally increase the outgoing shortwave radiation through more efficient backscatter and decrease of the NIR radiation absorption by atmospheric gases below aerosol particles.
机译:我们使用来自CALIOP的全球气溶胶光学深度数据和辐射传输模型来研究气溶胶直接辐射效应(DRE)及其对气溶胶垂直分辨率的敏感性。我们的研究跨度为三年(2007-2009),使用来自ISCCP D2的云数据将月度2.5度x 2.5度分辨率下的云气溶胶辐射相互作用考虑在内。地表,大气和大气顶部(TOA)的三年全球平均全天气溶胶DRE分别计算为-4.23、2.40和-1.83 Wm(-2)。如预期的那样,局部DRE和大气加热速率显示出显着变化。在由自然和人为颗粒(包括沙漠尘埃,生物质燃烧和城市/工业污染)组成的重气溶胶负荷较大的地区观察到最大的DRE。在TOA,气溶胶效应通常是负号,尽管在以吸收气溶胶和大面积反照率为特征的区域(例如沙漠)中发现了行星加热效应。云会散射并吸收太阳辐射,这通常会降低表面的气溶胶冷却和大气中的气溶胶升温。但是,由于上述云气溶胶对辐射吸收的增强,后一种作用减弱了。结果,云减少了气溶胶TOA(行星)的冷却,有时甚至导致了气溶胶变暖(例如,在热带南大西洋上空)。云对气溶胶DRE的影响在很大程度上取决于气溶胶的光学特性和低云以上的气溶胶负载分数。比较观察到的气溶胶垂直剖面与指数下降剖面的影响,我们发现对表面DRE的灵敏度较小,但对于大气柱和大气顶部较大。在全天候条件下,当大陆气溶胶在大气中升高更高时,TOA处的短波辐射减少,这是由于颗粒吸收的紫外线和可见辐射增加,而更高水平的海洋气溶胶通常通过更有效的反向散射增加了短波辐射并减少了气溶胶颗粒下方的大气对NIR辐射的吸收。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号