...
首页> 外文期刊>Combustion and Flame >Error-controlled kinetics reduction based on non-linear optimization and sensitivity analysis
【24h】

Error-controlled kinetics reduction based on non-linear optimization and sensitivity analysis

机译:基于非线性优化和灵敏度分析的误差控制动力学减少

获取原文
获取原文并翻译 | 示例
           

摘要

Efficient reduction techniques are necessary for the construction of compact chemical kinetic mechanisms to enable the application to large-scale simulations. In this work, a new formulation is proposed to derive skeletal mechanisms by species elimination. The proposed method relies on a gradient-based non-linear optimization (NLO) method, allowing for direct error control on user-defined quantities of interest (Qols). The key idea consists in formulating the species elimination by relaxing an integer-optimization problem into a continuous optimization problem that is solved iteratively. A species-targeted sensitivity analysis (SA) formulation is presented that can be combined with the optimization method to reduce the overall computational complexity of the procedure. After illustrating its principle, the NLO procedure is applied to different fuels of increasing chemical complexity, including methane, n-dodecane, and a four-component kerosene surrogate. Direct comparisons are performed with the directed relation graph method with error propagation (DRGEP) and SA. For the reduction of a detailed methane mechanism, consistency with DRGEP and SA is demonstrated, and the NLO procedure is shown to generate smaller mechanisms compared to the other two methods. In application to larger hydrocarbon and multicomponent transportation fuels, it is shown that significantly smaller mechanisms are obtained with the NLO procedure compared to the other approaches. (C) 2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:有效的还原技术对于构建紧凑的化学动力学机制是必不可少的,以使其能够应用于大规模模拟。在这项工作中,提出了一种新的配方来通过物种消除推导骨骼机制。所提出的方法依赖于基于梯度的非线性优化(NLO)方法,从而可以对用户定义的感兴趣量(Qols)进行直接误差控制。关键思想在于通过将整数优化问题简化为迭代求解的连续优化问题来制定物种消除的公式。提出了一种针对物种的敏感性分析(SA)公式,可以将其与优化方法结合使用,以减少该过程的整体计算复杂性。在说明其原理之后,将NLO程序应用于化学复杂性不断提高的各种燃料,包括甲烷,正十二烷和四组分煤油替代品。直接比较是使用带误差传播(DRGEP)和SA的有向关系图方法进行的。为了减少详细的甲烷机理,证明了与DRGEP和SA的一致性,并且与其他两种方法相比,NLO过程显示出较小的机理。在应用于较大的碳氢化合物和多组分运输燃料中时,与其他方法相比,使用NLO程序可获得的机理要小得多。 (C)2018年燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

  • 来源
    《Combustion and Flame》 |2019年第2期|192-206|共15页
  • 作者单位

    Stanford Univ, Ctr Turbulence Res, Stanford, CA 94305 USA;

    Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA;

    Stanford Univ, Ctr Turbulence Res, Stanford, CA 94305 USA|Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Reduced kinetics; Combustion; Optimization;

    机译:动力学降低;燃烧;优化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号