首页> 外文期刊>Combustion and Flame >Consumption and hydrocarbon growth processes in a 2-methyl-2-butene flame
【24h】

Consumption and hydrocarbon growth processes in a 2-methyl-2-butene flame

机译:2-甲基-2-丁烯火焰中的消耗和碳氢化合物生长过程

获取原文
获取原文并翻译 | 示例
           

摘要

This paper is concerned with the investigation of the chemical structure of a low-pressure, fuel-rich (phi = 1.8) premixed laminar flame fueled with 2-methyl-2-butene employing flame-sampling molecular-beam mass spectrometry with vacuum-ultraviolet single-photon ionization. Partially isomer-resolved mole fraction profiles can be explained by a decomposition scheme based on hydrogen abstraction and addition reactions. The presence of 9 allylic C-H bonds compared to only one vinylic C-H bond is the key feature that governs the fuel consumption and subsequent hydrocarbon growth reactions. Compared to other alkenes, including e.g., 1-butene, 2-butene, and iso-butene (Schenk et al., 2013), 2-methyl-2-butene shows a remarkable tendency to form soot precursor molecules such as toluene. In particular, experimental evidence is provided here that toluene, o-xylerie, and styrene can be a starting point for PAH formation, thus serving as first aromatic rings besides benzene. The formation of toluene, o-xylene, and styrene can be traced back to the reactions of the resonantly stabilized C4H5 [center dot CH2-C equivalent to C-CH3 and CH2=CH-center dot C=CH2] radicals and the C5H7 [CH2=C(CH3)-center dot C=CH2] radicals that are readily formed through fuel-specific decomposition channels. Our experimental data in form of mole fraction profiles as a function of height above the burner for a mass range from 2 to 210 u can serve as reliable validation targets for model development. A preliminary comparison to the model of Westbrook et al. [1] that was optimized to capture ignition delay times and the low-temperature oxidation regime, shows promising elements already for the initial fuel consumption. (C) 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:本文研究了采用真空-紫外光谱的火焰取样分子束质谱法研究低压,富含燃料(phi = 1.8)的预混合层流火焰与2-甲基-2-丁烯混合的化学结构的方法。单光子电离。可以通过基于氢提取和加成反应的分解方案来解释部分异构体拆分的摩尔分数分布。与仅一个乙烯基C-H键相比,存在9个烯丙基C-H键是控制燃料消耗和后续烃增长反应的关键特征。与其他烯烃(包括1-丁烯,2-丁烯和异丁烯)相比(Schenk等,2013),2-甲基-2-丁烯显示出明显的形成烟灰前体分子(例如甲苯)的趋势。特别是,这里提供的实验证据表明,甲苯,邻羟基苯甲酸酯和苯乙烯可以作为PAH形成的起点,因此可以用作除苯之外的第一个芳香环。甲苯,邻二甲苯和苯乙烯的形成可以追溯到共振稳定的C4H5 [相当于C-CH3的中心点CH2-C和CH2 = CH中心点C = CH2]自由基与C5H7 [ CH2 = C(CH3)-中心点C = CH2]自由基很容易通过特定于燃料的分解通道形成。我们的质量分数为2到210 u的摩尔分数分布形式的数据作为燃烧器上方高度的函数,可以作为模型开发的可靠验证目标。与Westbrook等人模型的初步比较。文献[1]经过优化以捕获点火延迟时间和低温氧化状态,显示出已经有希望用于初始燃料消耗的元素。 (C)2016年燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号