首页> 外文期刊>AIP Advances >Electrical properties of GaAs metal–oxide–semiconductor structure comprising Al2O3 gate oxide and AlN passivation layer fabricated in situ using a metal–organic vapor deposition/atomic layer deposition hybrid system
【24h】

Electrical properties of GaAs metal–oxide–semiconductor structure comprising Al2O3 gate oxide and AlN passivation layer fabricated in situ using a metal–organic vapor deposition/atomic layer deposition hybrid system

机译:使用金属-有机气相沉积/原子层沉积混合系统原位制造的包括Al2O3栅氧化物和AlN钝化层的GaAs金属-氧化物-半导体结构的电性能

获取原文
           

摘要

This paper presents a compressive study on the fabrication and optimization of GaAs metal–oxide–semiconductor (MOS) structures comprising a Al2O3 gate oxide, deposited via atomic layer deposition (ALD), with an AlN interfacial passivation layer prepared in situ via metal–organic chemical vapor deposition (MOCVD). The established protocol afforded self-limiting growth of Al2O3 in the atmospheric MOCVD reactor. Consequently, this enabled successive growth of MOCVD-formed AlN and ALD-formed Al2O3 layers on the GaAs substrate. The effects of AlN thickness, post-deposition anneal (PDA) conditions, and crystal orientation of the GaAs substrate on the electrical properties of the resulting MOS capacitors were investigated. Thin AlN passivation layers afforded incorporation of optimum amounts of nitrogen, leading to good capacitance–voltage (C–V) characteristics with reduced frequency dispersion. In contrast, excessively thick AlN passivation layers degraded the interface, thereby increasing the interfacial density of states (D it) near the midgap and reducing the conduction band offset. To further improve the interface with the thin AlN passivation layers, the PDA conditions were optimized. Using wet nitrogen at 600 °C was effective to reduce D it to below 2 × 1012 cm?2 eV?1. Using a (111)A substrate was also effective in reducing the frequency dispersion of accumulation capacitance, thus suggesting the suppression of traps in GaAs located near the dielectric/GaAs interface. The current findings suggest that using an atmosphere ALD process with in situ AlN passivation using the current MOCVD system could be an efficient solution to improving GaAs MOS interfaces.
机译:本文对通过原子层沉积(ALD)沉积的Al2O3栅氧化物和通过金属有机法原位制备的AlN界面钝化层的GaAs金属氧化物半导体(MOS)结构的制造和优化进行了压缩研究。化学气相沉积(MOCVD)。已建立的协议在大气MOCVD反应器中提供了Al2O3的自限生长。因此,这使得能够在GaAs衬底上连续生长MOCVD形成的AlN和ALD形成的Al2O3层。研究了AlN厚度,沉积后退火(PDA)条件和GaAs衬底的晶体取向对所得MOS电容器电学性能的影响。薄的AlN钝化层提供了最佳量的氮,从而带来了良好的电容-电压(C-V)特性,并降低了频率色散。相反,过厚的AlN钝化层会降低界面质量,从而增加中间隙附近的态(D it)界面密度,并降低导带偏移。为了进一步改善与薄AlN钝化层的界面,对PDA条件进行了优化。在600℃下用湿氮气有效地将D降低到2×1012cm 2 eV 2以下。使用(111)A衬底在减少累积电容的频率色散方面也很有效,因此建议抑制位于电介质/ GaAs界面附近的GaAs中的陷阱。当前的发现表明,使用当前的MOCVD系统在原位AlN钝化中使用大气ALD工艺可能是改善GaAs MOS界面的有效解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号