首页> 外文期刊>International Journal of Modern Physics: Conference Series >MCNPX simulations of the silicon carbide semiconductor detector response to fast neutrons from D–T nuclear reaction
【24h】

MCNPX simulations of the silicon carbide semiconductor detector response to fast neutrons from D–T nuclear reaction

机译:碳化硅半导体探测器对D–T核反应中快速中子的响应的MCNPX模拟

获取原文
       

摘要

Silicon Carbide (SiC) has been long recognized as a suitable semiconductor material for use in nuclear radiation detectors of high-energy charged particles, gamma rays, X-rays and neutrons. The nuclear interactions occurring in the semiconductor are complex and can be quantified using a Monte Carlo-based computer code. In this work, the MCNPX (Monte Carlo N-Particle eXtended) code was employed to support detector design and analysis. MCNPX is widely used to simulate interaction of radiation with matter and supports the transport of 34 particle types including heavy ions in broad energy ranges. The code also supports complex 3D geometries and both nuclear data tables and physics models. In our model, monoenergetic neutrons from D–T nuclear reaction were assumed as a source of fast neutrons. Their energy varied between 16 and 18.2 MeV, according to the accelerating voltage of the deuterons participating in D–T reaction. First, the simulations were used to calculate the optimum thickness of the reactive film composed of High Density PolyEthylene (HDPE), which converts neutral particles to charged particles and thusly enhancing detection efficiency. The dependency of the optimal thickness of the HDPE layer on the energy of the incident neutrons has been shown for the inspected energy range. Further, from the energy deposited by secondary charged particles and recoiled ions, the detector response was modeled and the effect of the conversion layer on detector response was demonstrated. The results from the simulations were compared with experimental data obtained for a detector covered by a 600 and 1300 μ m thick conversion layer. Some limitations of the simulations using MCNPX code are also discussed.
机译:长期以来,碳化硅(SiC)被认为是适用于高能带电粒子,伽马射线,X射线和中子的核辐射探测器的半导体材料。半导体中发生的核相互作用很复杂,可以使用基于蒙特卡洛的计算机代码进行量化。在这项工作中,使用了MCNPX(蒙特卡罗N粒子扩展)代码来支持检测器的设计和分析。 MCNPX被广泛用于模拟辐射与物质的相互作用,并支持在宽能范围内传输34种粒子类型,包括重离子。该代码还支持复杂的3D几何形状以及核数据表和物理模型。在我们的模型中,来自D–T核反应的单能中子被认为是快速中子的来源。根据参与DT反应的氘核的加速电压,它们的能量在16和18.2 MeV之间变化。首先,使用模拟方法计算由高密度聚乙烯(HDPE)组成的反应膜的最佳厚度,该膜将中性颗粒转化为带电颗粒,从而提高检测效率。对于所检查的能量范围,已经示出了HDPE层的最佳厚度对入射中子能量的依赖性。此外,根据次级带电粒子和反冲离子沉积的能量,对检测器响应进行了建模,并证明了转换层对检测器响应的影响。将模拟结果与由600和1300μm厚的转换层覆盖的检测器获得的实验数据进行比较。还讨论了使用MCNPX代码进行模拟的一些局限性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号