首页> 外文期刊>Energy Harvesting and Systems >A Review on Piezoelectric Energy Harvesting: Materials, Methods, and Circuits
【24h】

A Review on Piezoelectric Energy Harvesting: Materials, Methods, and Circuits

机译:压电能量收集的综述:材料,方法和电路

获取原文
           

摘要

Piezoelectric microelectromechanical systems (PiezoMEMS) are attractive for developing next generation self-powered microsystems. PiezoMEMS promises to eliminate the costly assembly for microsensors/microsystems and provide various mechanisms for recharging the batteries, thereby, moving us closer towards batteryless wireless sensors systems and networks. In order to achieve practical implementation of this technology, a fully assembled energy harvester on the order of a quarter size dollar coin (diameter=24.26?mm, thickness=1.75?mm) should be able to generate about 100?μW continuous power from low frequency ambient vibrations (below 100?Hz). This paper reviews the state-of-the-art in microscale piezoelectric energy harvesting, summarizing key metrics such as power density and bandwidth of reported structures at low frequency input. This paper also describes the recent advancements in piezoelectric materials and resonator structures. Epitaxial growth and grain texturing of piezoelectric materials is being developed to achieve much higher energy conversion efficiency. For embedded medical systems, lead-free piezoelectric thin films are being developed and MEMS processes for these new classes of materials are being investigated. Non-linear resonating beams for wide bandwidth resonance are also reviewed as they would enable wide bandwidth and low frequency operation of energy harvesters. Particle/granule spray deposition techniques such as aerosol-deposition (AD) and granule spray in vacuum (GSV) are being matured to realize the meso-scale structures in a rapid manner. Another important element of an energy harvester is a power management circuit, which should maximize the net energy harvested. Towards this objective, it is essential for the power management circuit of a small-scale energy harvester to dissipate minimal power, and thus it requires special circuit design techniques and a simple maximum power point tracking scheme. Overall, the progress made by the research and industrial community has brought the energy harvesting technology closer to the practical applications in near future.
机译:压电微机电系统(PiezoMEMS)对于开发下一代自供电微系统具有吸引力。 PiezoMEMS有望消除用于微传感器/微系统的昂贵组装,并提供各种为电池充电的机制,从而使我们更接近无电池无线传感器系统和网络。为了实现该技术的实际实施,一个四分之一美元硬币(直径= 24.26?mm,厚度= 1.75?mm)量级的完全组装的能量收集器应该能够从低功率产生大约100?μW的连续功率。频率环境振动(低于100?Hz)。本文回顾了微型压电能量收集的最新技术,总结了关键指标,例如功率输入和低频输入时报告结构的带宽。本文还介绍了压电材料和谐振器结构的最新进展。压电材料的外延生长和晶粒组织化正在发展,以实现更高的能量转换效率。对于嵌入式医疗系统,正在开发无铅压电薄膜,并且正在研究这些新型材料的MEMS工艺。还回顾了用于宽带宽谐振的非线性谐振波束,因为它们将使能量采集器实现宽带宽和低频运行。诸如气溶胶沉积(AD)和真空颗粒喷雾(GSV)的颗粒/颗粒喷涂技术已经成熟,可以快速实现中尺度结构。能量收集器的另一个重要元素是电源管理电路,该电路应使收集的净能量最大化。为了实现这一目标,小型能量收集器的电源管理电路必须消耗最小的功率,因此,它需要特殊的电路设计技术和简单的最大功率点跟踪方案。总体而言,研究和工业界的进步使能量收集技术在不久的将来更接近于实际应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号