首页> 外文期刊>Romanian Journal of Biophysics >DRUG DOSAGE ACTIVITY OF ANTI-INFLAMMATORY DRUGS (NSAID). A NOVEL PHYSICAL APPROACH
【24h】

DRUG DOSAGE ACTIVITY OF ANTI-INFLAMMATORY DRUGS (NSAID). A NOVEL PHYSICAL APPROACH

机译:抗炎药(NSAID)的药物剂量活性。一种新的物理方法

获取原文
       

摘要

The constant pursuit in pharmacology and pharmaco-chemistry is to study how efficiently a drug works on a system for a particular disease. Usually physico-chemical and quantum mechanical as well as physical techniques like IR, Raman, have been used to study drug-DNA interactions. Murthy et al. [8–20] were active in correlating the drug activity with physical parameters like electron ionization cross-section and λm. The present work is an extension of the same to anti-inflammatory drugs starting from evaluation of polarizabilities ?M, diamagnetic susceptibility ?M and molecular electron ionization cross-section Q and discussing the quantity of dosage and their effects through an algebraic relationship involving Q, dosage, plasma protein binding, bio availability and half-life period. A critical look at the results on Q and dosage reveal that drugs with small Q are highly active and are to be monitored in small quantities and any minute increase in dosage will result in unwanted toxic effects and drugs with high Q are less active and can be monitored in large quantities, without any adverse toxic effects. The algebraic formula enable one to calculate the dosages theoretically from the value of Q and other parameters and the calculated dosage through the formula agreed well with the suggested dosages. For example, in aspirin the calculated equivalent dosage per day is 2.242 g, while the suggested practical dosage is 2.6 g. A similar observation is noted in Sulindac with a theoretical dosage of 0.318 g/day, as against the practical dosage of 0.4 g/day. Thus the present investigations pave the way for a new direction of approach to study the drug activity without using techniques which involve highly expensive instrumentation.
机译:药理学和药理化学一直追求的是研究药物在特定疾病的系统上的工作效率。通常使用物理化学和量子力学以及诸如IR,拉曼之类的物理技术来研究药物与DNA的相互作用。 Murthy等。 [8-20]活跃地将药物活性与物理参数如电子电离截面和λm相关联。本工作是从抗极化药的扩展开始,它是通过评估极化率,抗磁化率,分子电子电离截面Q来开始的,并通过涉及Q的代数关系讨论剂量的数量及其作用,剂量,血浆蛋白结合,生物利用度和半衰期。对Q和剂量结果的批判性观察表明,Q较小的药物具有很高的活性,应进行少量监测,剂量的任何微小增加都会导致不良的毒性作用,Q较高的药物活性较低,并且可能会进行大量监测,没有任何不利的毒性影响。代数公式使理论上可以根据Q值和其他参数来计算剂量,并且通过公式计算出的剂量与建议的剂量非常吻合。例如,在阿司匹林中,每天计算的当量剂量为2.242 g,而建议的实际剂量为2.6 g。在舒林酸中观察到类似的观察,理论剂量为0.318 g /天,而实际剂量为0.4 g /天。因此,本研究为不使用涉及昂贵仪器的技术而研究药物活性的新方法铺平了道路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号