首页> 外文期刊>RSC Advances >Polymer semiconductors incorporating head-to-head linked 4-alkoxy-5-(3-alkylthiophen-2-yl)thiazole
【24h】

Polymer semiconductors incorporating head-to-head linked 4-alkoxy-5-(3-alkylthiophen-2-yl)thiazole

机译:包含头对头连接的4-烷氧基-5-(3-烷基噻吩-2-基)噻唑的聚合物半导体

获取原文
           

摘要

Head-to-head linked bithiophenes with planar backbones hold distinctive advantages for constructing organic semiconductors, such as good solubilizing capability, enabling narrow bandgap, and effective tuning of frontier molecular orbital (FMO) levels using minimal thiophene numbers. In order to realize planar backbone, alkoxy chains are typically installed on thiophene head positions, owing to the small van der Waals radius of oxygen atom and accompanying noncovalent S?O interaction. However, the strong electron donating alkoxy chains on the electron-rich thiophenes lead to elevated FMO levels, which are detrimental to material stability and device performance. Thus, a new design approach is needed to counterbalance the strong electron donating property of alkoxy chains to bring down the FMOs. In this study, we designed and synthesized a new head-to-head linked building block, 4-alkoxy-5-(3-alkylthiophen-2-yl)thiazole (TRTzOR), using an electron-deficient thiazole to replace the electron-rich thiophene. Compared to previously reported 3-alkoxy-3′-alkyl-2,2′-bithiophene (TRTOR), TRTzOR is a weaker electron donor, which considerably lowers FMOs and maintains planar backbone through the noncovalent S?O interaction. The new TRTzOR was copolymerized with benzothiadiazoles with distinct F numbers to yield a series of polymer semiconductors. Compared to TRTOR-based analogous polymers, these TRTzOR-based polymers have broader absorption up to 950 nm with lower-lying FMOs by 0.2–0.3 eV, and blending these polymers with PC _(71) BM leads to polymer solar cells (PSCs) with improved open-circuit voltage ( V _(oc) ) by ca. 0.1 V and a much smaller energy loss ( E _(loss) ) as low as 0.59 eV. These results demonstrate that thiazole substitution is an effective approach to tune FMO levels for realizing higher V _(oc) s in PSCs and the small E _(loss) renders TRTzOR a promising building block for developing high-performance organic semiconductors.
机译:具有平面骨架的头对头连接的联噻吩在构造有机半导体方面具有独特的优势,例如良好的增溶能力,窄带隙以及使用最小的噻吩数有效调整前沿分子轨道(FMO)的水平。为了实现平面骨架,由于氧原子的范德华半径小以及伴随的非共价S 2 O相互作用,烷氧基链通常安装在噻吩的头部位置。但是,富电子噻吩上的强供电子烷氧基链会导致FMO含量升高,这对材料稳定性和器件性能有害。因此,需要一种新的设计方法来平衡烷氧基链的强电子给体特性以降低FMO。在这项研究中,我们设计并合成了一种新的头对头连接的结构单元4-烷氧基-5-(3-烷基噻吩-2-基)噻唑(TRTzOR),使用缺电子的噻唑替代了丰富的噻吩。与以前报道的3-烷氧基-3'-烷基-2,2'-联噻吩(TRTOR)相比,TRTzOR是一种较弱的电子供体,可显着降低FMO并通过非共价S2O相互作用维持平面骨架。将新的TRTzOR与具有不同F值的苯并噻二唑共聚,得到了一系列聚合物半导体。与基于TRTOR的类似聚合物相比,这些基于TRTzOR的聚合物在950 nm处具有更低的FMO吸收了0.2–0.3 eV,具有更宽的吸收率,并将这些聚合物与PC _(71)BM混合可得到聚合物太阳能电池(PSC)开路电压(V _(oc))提高了约0.1 V,能量损耗小得多(E _(loss))低至0.59 eV。这些结果表明,噻唑取代是调节FMO水平以实现PSC中更高V_(oc)s的有效方法,E_(损失)小使得TRTzOR成为开发高性能有机半导体的有希望的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号