首页> 外文期刊>RSC Advances >Designing a novel nanocomposite for bone tissue engineering using electrospun conductive PBAT/polypyrrole as a scaffold to direct nanohydroxyapatite electrodeposition
【24h】

Designing a novel nanocomposite for bone tissue engineering using electrospun conductive PBAT/polypyrrole as a scaffold to direct nanohydroxyapatite electrodeposition

机译:用电纺导电PBAT /聚吡咯作为直接纳米羟基磷灰石电沉积的骨组织工程新纳米复合材料

获取原文
           

摘要

Electrospinning is a well-recognized technique for producing nanostructured fibers capable of supporting cell adhesion and further proliferation. Here, we prepared a novel electrospun blend from poly(butylene adipate- co -terephthalate) (PBAT), a non-conductive and biodegradable polymer, and a conductive polymer, namely polypyrrole (PPy). Therefore, the goal was to create electrically conductive nanoscaffolds for tissue engineering applications. Furthermore, to improve the scaffold biomimetic features for bone regeneration purposes, we demonstrated the feasibility of electrodepositing nanohydroxyapatite (nHAp) onto the new hybrid scaffold. Electrochemical measurements confirmed the electrical conductivity of the novel PBAT/PPy scaffold, which allowed nHAp electrodeposition, further confirmed via ATR-FTIR analysis and FE-SEM micrographs. The PPy loading did not change the fibers' average diameter, although the increase in the solution conductivity was probably responsible for leading to electrospun mats with smaller beads and a lower presence of flattened regions compared to PBAT neat. The hybrid scaffold was more hydrophilic than PBAT neat. The first presented an advanced contact angle (ACA) of 84°, whilst the latter presented an ACA of 115°. The incorporation of PPy to PBAT maintained the ability of the generated scaffold to support cell adhesion with no changes in MG-63 cell viability. However, the PBAT/PPy scaffold presented higher values of alkaline phosphatase, an important indicator of osteoblasts differentiation. In conclusion, we demonstrated a feasible approach to create electrically conductive nanoscaffolds, which are capable of undergoing nHAp electrodeposition in order to generate materials that are more hydrophilic with improved cell differentiation. These results show the potential of application of this novel scaffold towards bone regenerative medicine.
机译:静电纺丝是一种良好的识别技术,用于生产能够支持电池粘附和进一步增殖的纳米结构纤维。这里,我们制备了来自聚(丁烯己二酸二丁酸二苯二甲酸丁二醇酯)(PBAT),非导电和可生物降解的聚合物的新型电纺共混物,以及导电聚合物,即聚吡咯(PPY)。因此,目标是为组织工程应用创造导电纳米电载。此外,为了改善骨再生目的的支架仿生特征,我们证明了电沉积纳米羟基磷灰石(NHAP)在新的杂交支架上的可行性。电化学测量证实了新型PBAT / PPY支架的电导率,其允许NHAP电沉积,通过ATR-FTIR分析和FE-SEM显微照片进一步证实。 PPY负载没有改变纤维的平均直径,尽管溶液电导率的增加可能负责导致具有较小珠子的Electrowun垫和与PBAT整洁相比扁平区域的较低存在。杂交支架比PBAT整洁更亲水。首先呈现了84°的高级接触角(ACA),而后者呈现为115°的ACA。将PPY掺入PBAT保持产生的支架支持细胞粘附的能力,没有Mg-63细胞活力的变化。然而,PBAT / PPY支架呈现出较高的碱性磷酸酶值,其成骨细胞分化的重要指标。总之,我们证明了一种可行的方法来产生导电纳米亚烃形,其能够进行NHAP电沉积,以便产生具有改善细胞分化更亲水的材料。这些结果表明,这种新型支架朝向骨再生医学的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号