...
首页> 外文期刊>Electric power systems research >Application of GA/GA-SA based fuzzy automatic generation control of a multi-area thermal generating system
【24h】

Application of GA/GA-SA based fuzzy automatic generation control of a multi-area thermal generating system

机译:基于GA / GA-SA的模糊自动发电控制在多区域热力发电系统中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

Optimal integral gains (for integral gain control) and proportional-integral-derivative gains (for PID control) are computed by genetic algorithm (GA) and then hybrid genetic algorithm-simulated annealing (GA-SA) techniques for nominal values of area input parameters and optimal transient responses of area frequency deviations in terms of settling times, undershoots, overshoots and df/dt as output with incremental increase of area load for interconnected three equal generating areas. Though it is well known that the normal PID control is usually superior to integral control because of the advantages of each of the three individual control actions (proportional, integral and derivative), the author's contribution in the paper is optimizing these individual PID gains through GA or GA-SA methods to obtain an optimal PID controller, which would be further better than an optimal integral controller. These optimal PID gains are tested by plotting transient responses analytically by MATLAB based software program and then by "SIMULINK of MATLAB software." Both methods yield same results and prove that optimal PID gains are superior to suboptimal, arbitrary PID gains and optimal integral gains as well with respect to transient responses. The author's next contribution is to show optimal PID gains as determined by hybrid GA-SA technique to be more globally optimal than those determined by GA method. For off-nominal input parameters, transient responses as determined by fast acting Sugeno fuzzy logic technique reflect the same superiority of GA-SA based optimized gains, specially for PID control, the same has also been verified by "MATLAB-SIMULINK" software.
机译:通过遗传算法(GA)计算最佳积分增益(用于积分增益控制)和比例积分微分增益(用于PID控制),然后使用混合遗传算法模拟退火(GA-SA)技术来计算区域输入参数的标称值区域频率偏差的最佳瞬态响应,包括建立时间,下冲,上冲和df / dt作为输出,随着相互连接的三个相等发电区域的区域负荷的增加而增加。尽管众所周知,由于三个单独控制动作(比例,积分和微分)中的每一个的优点,普通PID控制通常都优于积分控制,但作者在论文中的贡献是通过GA优化了这些单独的PID增益或GA-SA方法获得最佳PID控制器,这将比最佳积分控制器更好。通过基于MATLAB的软件程序然后通过“ MATLAB软件的SIMULINK”以解析方式绘制瞬态响应,可以测试这些最佳PID增益。两种方法均得出相同的结果,并证明最佳PID增益在瞬态响应方面优于次优,任意PID增益和最佳积分增益。作者的下一个贡献是将混合GA-SA技术确定的最优PID增益显示为比GA方法确定的最优PID全局最优。对于非标称输入参数,由快速作用的Sugeno模糊逻辑技术确定的瞬态响应反映了基于GA-SA的优化增益的相同优势,特别是对于PID控制,“ MATLAB-SIMULINK”软件也对此进行了验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号