...
首页> 外文期刊>Energy & environmental science >Impact of substrate diffusion and enzyme distribution in 3D-porous electrodes: a combined electrochemical and modelling study of a thermostable H-2/O-2 enzymatic fuel cell
【24h】

Impact of substrate diffusion and enzyme distribution in 3D-porous electrodes: a combined electrochemical and modelling study of a thermostable H-2/O-2 enzymatic fuel cell

机译:底物扩散和酶在3D多孔电极中的分布的影响:热稳定的H-2 / O-2酶燃料电池的电化学和模型研究相结合

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Using redox enzymes as biocatalysts in fuel cells is an attractive strategy for sustainable energy production. Once hydrogenase for H-2 oxidation and bilirubin oxidase (BOD) for O-2 reduction have been wired on electrodes, the enzymatic fuel cell (EFC) thus built is expected to provide sufficient energy to power small electronic devices, while overcoming the issues associated with scarcity, price and inhibition of platinum based catalysts. Despite recent improvements, these biodevices suffer from moderate power output and low stability. In this work, we demonstrate how substrate diffusion and enzyme distribution in the bioelectrodes control EFC performance. A new EFC was built by immobilizing two thermostable enzymes in hierarchical carbon felt modified by carbon nanotubes. This device displayed very high power and stability, producing 15.8 mW h of energy after 17 h of continuous operation. Despite the large available electrode porosity, mass transfer was shown to limit the performance. To determine the optimal geometry of the EFC, a numerical model was established, based on a finite element method (FEM). This model allowed an optimal electrode thickness of less than 100 mm to be determined, with a porosity of 60%. Thanks to very efficient enzyme wiring and high enzyme loading, non-catalytic signals for both enzymes were detected and quantified, enabling the electroactive enzyme distribution in the porous electrode to be fully determined for the first time. High total turnover numbers, approaching 10(7) for BOD and 10(8) for hydrogenase, were found, as was an impressive massic activity of 1 A mg(-1) with respect to the mass of the electroactive enzyme molecules. This strategy, relying on stable enzymes and mesoporous materials, and the model set up may constitute the basis for a larger panel of bioelectrodes and EFCs.
机译:在燃料电池中使用氧化还原酶作为生物催化剂是可持续能源生产的一种有吸引力的策略。一旦将用于H-2氧化的氢化酶和用于O-2还原的胆红素氧化酶(BOD)连接在电极上,就可以预期由此构建的酶促燃料电池(EFC)提供足够的能量来为小型电子设备供电,同时克服相关的问题具有稀缺性,价格优势和对铂基催化剂的抑制作用。尽管最近进行了改进,但这些生物设备仍遭受中等功率输出和低稳定性的困扰。在这项工作中,我们演示了生物电极中的底物扩散和酶分布如何控制EFC性能。通过将两种热稳定酶固定在由碳纳米管改性的分级碳毡中,构建了新的EFC。该设备显示出非常高的功率和稳定性,在连续运行17 h后产生的能量为15.8 mW h。尽管有大量可用的电极孔隙率,但传质已显示出会限制性能。为了确定EFC的最佳几何形状,基于有限元方法(FEM)建立了数值模型。该模型可以确定小于100 mm的最佳电极厚度,孔隙率为60%。得益于非常高效的酶连接和高酶负载,可以检测和定量两种酶的非催化信号,从而首次可以完全确定多孔电极中电活性酶的分布。发现高总周转数,BOD接近10(7),氢化酶接近10(8),相对于电活性酶分子的质量,令人印象深刻的1 A mg(-1)的质量活性。这种策略依赖于稳定的酶和介孔材料,并且建立的模型可能构成了更多生物电极和EFC的基础。

著录项

  • 来源
    《Energy & environmental science》 |2017年第9期|1966-1982|共17页
  • 作者单位

    Aix Marseille Univ, CNRS, BIP, 31 Chemin Aiguier, F-13402 Marseille, France;

    Aix Marseille Univ, CNRS, BIP, 31 Chemin Aiguier, F-13402 Marseille, France;

    Aix Marseille Univ, CNRS, BIP, 31 Chemin Aiguier, F-13402 Marseille, France;

    Aix Marseille Univ, CNRS, BIP, 31 Chemin Aiguier, F-13402 Marseille, France;

    Aix Marseille Univ, IUSTI, CNRS UMR 7343, Technopole Chateau Gombert,5,Rue Enrico Fermi, F-13453 Marseille, France;

    Bordeaux Univ, Ctr Rech Paul Pascal, UPR 8641, CNRS, F-33600 Pessac, France;

    Aix Marseille Univ, CNRS, BIP, 31 Chemin Aiguier, F-13402 Marseille, France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号