...
首页> 外文期刊>Environmental Science & Technology >Demographic Toxicokinetic-Toxicodynamic Modeling of Lethal Effects
【24h】

Demographic Toxicokinetic-Toxicodynamic Modeling of Lethal Effects

机译:致死效应的人口毒性动力学动力学模型

获取原文
获取原文并翻译 | 示例
           

摘要

The aquatic effect assessment of chemicals is largely based on standardized measures of toxicity determined in short-term laboratory tests which are designed to reduce variability. For this purpose, uniform individuals of a species are kept under environmental and chemical exposure conditions which are as constant as possible. In nature, exposure often appears to be pulsed, effects might last longer than a few days, sensitivity might vary among different sized organisms and populations are usually size or age structured and are subject to demographic processes. To overcome this discrepancy, we tested toxicokinetic- toxicodynamic models of different complexities, including body size scaling approaches, for their ability to represent lethal effects observed for Daphnia magna exposed to triphenyltin. The consequences of the different toxicokinetic and toxicodynamic assumptions for population level responses to pulsed exposure are tested by means of an individual based model and are evaluated by confronting model predictions with population data for various pulsed exposure scenarios. We provide an example where increased model complexity reduces the uncertainty in model outputs. Furthermore, our results emphasize the importance of considering population demography in toxicokinetics and toxicodynamics for understanding and predicting potential chemical impacts at higher levels of biological organization.
机译:化学品的水生作用评估很大程度上是基于短期实验室测试中确定的毒性标准化措施,旨在减少变异性。为此,将物种的统一个体保持在尽可能恒定的环境和化学暴露条件下。在自然界中,暴露通常是脉冲性的,影响可能会持续几天以上,不同大小的生物体之间的敏感性可能会有所不同,种群通常具有大小或年龄结构,并受人口统计学影响。为了克服这种差异,我们测试了不同复杂程度(包括规模缩放方法)的毒物动力学-毒物动力学模型,以显示暴露于三苯锡的大型蚤(Daphnia magna)的致死作用。通过基于个体的模型测试人口水平对脉冲暴露的反应的不同毒物动力学和毒物动力学假设的结果,并通过将模型预测与各种脉冲暴露场景的种群数据相面对来进行评估。我们提供了一个示例,其中增加的模型复杂度降低了模型输出中的不确定性。此外,我们的结果强调了考虑人口统计学在毒物代谢动力学和毒物动力学方面的重要性,以了解和预测更高水平生物组织中的潜在化学影响。

著录项

  • 来源
    《Environmental Science & Technology》 |2016年第11期|6017-6024|共8页
  • 作者单位

    Research Institute for Ecosystem Analysis and Assessment (gaiac), Kackertstrasse 10, 52072 Aachen, Germany,Institute for Environmental Research, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany;

    Institute for Environmental Research, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany,RIFCON GmbH, Goldbeckstrasse 13, 69493 Hirschberg, Germany;

    Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Gruendenstrasse 40, 4132 Muttenz, Switzerland;

    Bayer CropScience, Alfred-Nobel-Strasse 50, 40789 Monheim am Rhein, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号