...
首页> 外文期刊>Environmental toxicology and chemistry >A Reduced Model for Bioconcentration and Biotransformation of Neutral Organic Compounds in Midge
【24h】

A Reduced Model for Bioconcentration and Biotransformation of Neutral Organic Compounds in Midge

机译:中型生物浓度和中性有机化合物的生物浓度和生物转化模型

获取原文
获取原文并翻译 | 示例
           

摘要

A bioconcentration factor (BCF) database and a toxicokinetic model considering only biota-water partitioning and biotransformation were constructed for neutral organic chemicals in midge. The database contained quality-reviewed BCF and toxicokinetic data with variability constrained to within 0.5 to 1 log unit. Diverse conditions in exposure duration, flow set-up, substrate presence, temperature, and taxonomic classification did not translate into substantial variability in BCF, uptake rate constant (k(1)), or depuration rate constant (k(T)), and no systematic bias was observed in BCFs derived in unlabeled versus radiolabeled studies. Substance-specific biotransformation rate constants k(M) were derived by difference between the calculated biota-water partitioning coefficient (K-BW) and experimental BCF for developing a midge biotransformation model. Experimental midge BCF was modeled as BCF = K-BW/(1 + k(M/)k(2)) with log k(M) (k(M) in h(-1)) = -0.37 log K-OW - 0.06T (in K) + 18.87 (root mean square error [RMSE] = 0.60), log k(1) (k(1) in L kg(wet.wt)(-1) h(-1)) = -0.0747 W (body weight in mg(wet.wt)) + 2.35 (RMSE = 0.48). The K-BW value was estimated using midge biochemical composition and established polyparameter linear free energy relationships, and the diffusive elimination rate constant (k(2)) was computed as k(2) = k(1)/K-BW. The BCF model predicted 85% of BCFs that associated with neutral organic compounds (log K-OW = 1.46 - 7.75) to within 1 log-unit error margin and had comparable accuracy similar to amphipod or fish models. A number of outliers and critical limitations of the k(M) model were identified and examined, and they largely reflected the inherent limitation of difference-derived k(M), the lack of chemical diversity, and inadequate temperature variation in existing data. Future modeling efforts can benefit from more BCF and toxicokinetic observations of BCF on structurally diverse chemicals for model training, validation, and diagnosis. Environ Toxicol Chem 2020;00:1-15. (c) 2020 SETAC
机译:仅考虑Biota-Perty Partiting和BiotroAnsion的生物浓度因子(BCF)数据库和毒物动力学模型被构建为Midge中性有机化学品。该数据库包含质量审查的BCF和毒物动松数据,可变性受到约0.5到1个日志单元的限制。暴露持续时间的不同条件,流量设置,基质存在,温度和分类学分类在BCF,摄取率常数(K(1))或剩余率常数(K(T))中没有转化为大量变异性(K(T))在未标记的与放射性标记研究中衍生的BCF中未观察到系统偏差。特异性物质的生物转化率常数K(M)是通过计算的生物痤疮 - 水分配系数(K-BW)与实验BCF之间的差异来衍生出Midge生物转化模型的差异。实验MIDGE BCF以BCF = K-BW /(1 + k(m /)k(2))为具有log k(m)(k(m))(h(-1))= -0.37 log k-ow - 0.06t(k)+ 18.87(均均方误差[Rmse] = 0.60),log k(1)(k(1)在l kg(wet.wt)( - 1)h(-1))= -0.0747 W(mg中的体重(wet.wt))+ 2.35(RMSE = 0.48)。使用Midge生物化学组合物估计K-BW值,并建立的息肉表线性自由能量关系,并且将扩散消除速率常数(K(2))计算为K(2)= K(1)/ K-BW。 BCF模型预测> 85%的BCF与中性有机化合物(log k-ow = 1.46-7.75)相关的BCF,在1个对数误差余量内,并且具有类似于Amphipod或Fish模型的可比精度。鉴定并检查了k(m)模型的许多异常值和临界局限性,并且它们在很大程度上反映了差异衍生的k(m)的固有限制,缺乏化学多样性和现有数据的温度变化不足。未来的建模努力可以从BCF的更多BCF和BCF的毒性观察中受益于结构多样化的化学品,用于模型培训,验证和诊断。环境毒素化学2020; 00:1-15。 (c)2020 Setac

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号