...
首页> 外文期刊>Heat Transfer Engineering >Buoyancy-Aided Mixed Convection Between Shear-Thinning Non-Newtonian Nanofluids and Unbounded Elliptic Cylinders in a Vertical Channel
【24h】

Buoyancy-Aided Mixed Convection Between Shear-Thinning Non-Newtonian Nanofluids and Unbounded Elliptic Cylinders in a Vertical Channel

机译:垂直方向上变稀的非牛顿纳米流体与无界椭圆形圆柱体之间的浮力辅助混合对流

获取原文
获取原文并翻译 | 示例
           

摘要

This work presents buoyancy-driven mixed convective flow and heat transfer phenomena of an isothermally heated horizontal elliptic cylinder in vertically upward unbounded flow of power-law type non-Newtonian nanofluids using ANSYS Fluent. The governing continuity, momentum and energy equations for the shear-thinning power-law nanofluids along with suitable boundary conditions are simultaneously solved within the limitations of Boussinesq approximation. The semi implicit method for pressure-linked equations algorithm along with the quadratic upstream interpolation for convective kinematics scheme for discretizing the convective terms in both momentum and energy equations are adopted. The ranges of parameters considered for this study are: volume fraction of nanoparticles, 0.005-0.045; aspect ratio of elliptic cylinder, 0.5-2.5; and Richardson number, 0-40; and a representative Reynolds number of 20. The streamline patterns, surface pressure coefficient distributions, total drag coefficients, isotherm contours, and Nusselt numbers are presented for better understanding of heat transfer and flow phenomena around elliptic cylinders. Briefly results indicate that the total drag coefficient is found to increase with the increasing Richardson number whereas it decreases with the increasing volume fraction of nanoparticles. The average Nusselt numbers are found to increase with increasing Richardson number and increasing volume fraction of nanoparticles.
机译:这项工作提出了使用ANSYS Fluent在等幂律型非牛顿纳米流体的垂直向上无界流动中等温加热的水平椭圆圆柱体的浮力驱动的混合对流和传热现象。在Boussinesq逼近的限制内,同时求解了变稀的幂律纳米流体的控制连续性,动量和能量方程式以及适当的边界条件。对流运动学方案采用压力关联方程算法的半隐式方法以及二次上游插值,以离散化动量和能量方程中的对流项。本研究考虑的参数范围是:纳米粒子的体积分数,0.005-0.045;椭圆圆柱的长宽比为0.5-2.5;理查森数为0-40;雷诺数为20。代表性的流线型式,表面压力系数分布,总阻力系数,等温线轮廓和Nusselt数用于更好地了解椭圆圆柱体周围的传热和流动现象。简要的结果表明,发现总阻力系数随Richardson数的增加而增加,而随纳米粒子体积分数的增加而减小。发现平均努塞尔数随理查森数增加和纳米颗粒的体积分数增加而增加。

著录项

  • 来源
    《Heat Transfer Engineering》 |2020年第10期|536-550|共15页
  • 作者

  • 作者单位

    Department of Chemical Engineering Indian Institute of Technology Guwahati Guwahati Assam India;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号