首页> 外文期刊>Heat transfer >Entropy analysis of magnetohydrodynamic nanofluid transport past an inverted cone: Buongiorno's model
【24h】

Entropy analysis of magnetohydrodynamic nanofluid transport past an inverted cone: Buongiorno's model

机译:磁力动力学纳米流体运输过去倒锥的熵分析:Buongiorno模型

获取原文
获取原文并翻译 | 示例
           

摘要

The entropy analysis of the magnetohydrodynamic (MHD) thermal convection flow of a nanofluid past an inverted cone with suction/injection is presented in this article. The Buongiorno's model is adopted for nanofluid transport, considering the Brownian motion and thermophoresis effects. The governing partial differential conservation equations and wall and freestream boundary conditions are rendered into a nondimensional form and solved computationally using the Keller-Box finite-difference method. The entropy analysis due to MHD fluid flow and viscous dissipation is also included. The numerical results are presented graphically for the impact of various thermo-physical parameters on velocity, temperature, na-noparticle volume fraction, shear stress rate, heat transfer rate, and mass transfer. Validations with earlier solutions in the literature are also included. A comprehensive description of the simulations is included. It is observed that velocity and temperature are enhanced with the increase in Brownian motion parameter values, whereas concentration, entropy, and Bejan number are reduced. An increase in the thermophoresis parameter and buoyancy ratio parameter reduces velocity and entropy, but increases temperature, concentration, and Bejan number. An increase in the magnetic parameter is found to decrease velocity, entropy generation number, and Bejan number, but it increases temperature and concentration. Also, an increase in the suction/ injection parameter is seen to reduce velocity, temperature, concentration, and Bejan number, but the entropy generation number is observed to increase. The study finds applications in heat exchangers technology, materials processing, solar energy systems, cooling and heating processes, environmental applications, geothermal energy storage, and so on.
机译:本文介绍了纳米流体纳米流体的磁性动力学(MHD)热对流流量的熵分析。考虑到布朗运动和热量效应,采用Buongiorno的模型。控制局部差分保护方程和墙壁和FreeStream边界条件被呈现为不统计的形式,并使用Keller-Box有限差分方法计算地解决。还包括由于MHD流体流动和粘性耗散导致的熵分析。数值结果以图形方式呈现,用于各种热物理参数对速度,温度,Na-noparticle馏分,剪切应力速率,传热速率和传质的影响。还包括与文献中早期解决方案的验证。包括模拟的全面描述。观察到,随着布朗运动参数值的增加,增强了速度和温度,而浓度,熵和Bejan数减少。致热助长参数和浮力比参数的增加减少了速度和熵,但增加了温度,浓度和BEJAN数。发现磁性参数的增加来降低速度,熵生成数和Bejan号,但它会增加温度和浓度。而且,观察到吸入/注射参数的增加以降低速度,温度,浓度和BEJAN数,但观察到熵产生数量增加。该研究在热交换器技术,材料加工,太阳能系统,冷却和加热过程,环境应用,地热能储存等中找到了应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号