首页> 外文期刊>Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on >Density-tapered spiral arrays for ultrasound 3-D imaging
【24h】

Density-tapered spiral arrays for ultrasound 3-D imaging

机译:用于超声3D成像的密度锥形螺旋阵列

获取原文
获取原文并翻译 | 示例
           

摘要

The current high interest in 3-D ultrasound imaging is pushing the development of 2-D probes with a challenging number of active elements. The most popular approach to limit this number is the sparse array technique, which designs the array layout by means of complex optimization algorithms. These algorithms are typically constrained by a few steering conditions, and, as such, cannot guarantee uniform side-lobe performance at all angles. The performance may be improved by the ungridded extensions of the sparse array technique, but this result is achieved at the expense of a further complication of the optimization process. In this paper, a method to design the layout of large circular arrays with a limited number of elements according to Fermat's spiral seeds and spatial density modulation is proposed and shown to be suitable for application to 3-D ultrasound imaging. This deterministic, aperiodic, and balanced positioning procedure attempts to guarantee uniform performance over a wide range of steering angles. The capabilities of the method are demonstrated by simulating and comparing the performance of spiral and dense arrays. A good trade-off for small vessel imaging is found, e.g., in the 60Λ spiral array with 1.0Λ elements and Blackman density tapering window. Here, the grating lobe level is ???16 dB, the lateral resolution is lower than 6λ the depth of field is 120Λ and, the average contrast is 10.3 dB, while the sensitivity remains in a 5 dB range for a wide selection of steering angles. The simulation results may represent a reference guide to the design of spiral sparse array probes for different application fields.
机译:当前对3-D超声成像的高度关注正在推动具有挑战性数量的活性元素的2-D探头的开发。限制此数目的最流行方法是稀疏数组技术,该技术通过复杂的优化算法来设计数组布局。这些算法通常受到一些转向条件的约束,因此,不能保证在所有角度下均等的旁瓣性能。通过稀疏数组技术的未扩展扩展可以提高性能,但是要以优化过程进一步复杂化为代价来获得此结果。本文提出了一种根据费马螺旋种子和空间密度调制来设计元素数量有限的大型圆形阵列的布局的方法,该方法适用于3D超声成像。这种确定性,非周期性和平衡的定位过程试图确保在较大的转向角范围内保持一致的性能。通过仿真和比较螺旋阵列和密集阵列的性能,证明了该方法的功能。对于小血管成像,例如在具有1.0Λ元素和Blackman密度渐减窗口的60Λ螺旋阵列中找到了一个很好的权衡。此处,光栅波瓣电平为16 dB,横向分辨率低于6λ,景深为120Λ,平均对比度为10.3 dB,而灵敏度则保持在5 dB的范围内,可广泛选择转向角度。仿真结果可以为不同应用领域的螺旋稀疏阵列探头的设计提供参考指南。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号