...
首页> 外文期刊>Indoor and built environment >Integrated building energy-computational fluid dynamics simulation for estimating the energy-saving effect of energy recovery ventilator with CO_2 demand-controlled ventilation system in office space
【24h】

Integrated building energy-computational fluid dynamics simulation for estimating the energy-saving effect of energy recovery ventilator with CO_2 demand-controlled ventilation system in office space

机译:集成建筑能量计算流体动力学模拟,用于估算办公室空间中采用CO_2需求控制通风系统的能量回收呼吸机的节能效果

获取原文
获取原文并翻译 | 示例
           

摘要

As ventilation is one of the critical heat loads in an office space, the ventilation rate might be optimized to develop sustainable, low-energy buildings and a healthy indoor environment. To create comprehensive and optimized indoor environmental designs, a building energy simulation (BES)-computational fluid dynamics (CFD)-integrated simulation is used to provide accurate and informative prediction of the thermal and air-quality performance in buildings, especially in the design stage. With the aim of developing an optimization procedure for the ventilation rate, this paper presents simulations that integrates BES and CFD with CO_2 demand-controlled ventilation (DCV) system, and applies them to a typical office space in Japan to optimize the ventilation rate through an energy recovery ventilator (ERV). The transient system control strategy is applied to two different airflow conditions in an office: a traditional ceiling supply system and an under-floor air distribution system. Compared with the fixed outdoor air intake rate, which is referred to as constant air volume ventilation, optimized ventilation systems associated with a CO_2 DCV produces energy savings of 11.6% and 24.1%, respectively. The difference in the energy saving effects of the two ventilation systems is caused by the difference in the ventilation efficiency in the occupied zone. The ventilation rate and ventilation efficiency have a significant impact on the energy penalty of an ERV. Therefore, optimizing the ventilation rate according to a CO_2 DCV system with an appropriate airflow pattern could contribute to both creating and maintaining a healthy, comfortable environment, in addition to saving energy.
机译:由于通风是办公室空间中的关键热负荷之一,因此可以优化通风速率,以开发可持续的,低能耗的建筑物和健康的室内环境。为了创建全面,优化的室内环境设计,特别是在设计阶段,使用集成了建筑能量模拟(BES)-计算流体力学(CFD)的模拟来提供准确,信息丰富的建筑物热和空气质量性能预测。为了制定通风率的优化程序,本文提出了将BES和CFD与CO_2需求控制通风(DCV)系统集成的模拟,并将其应用于日本的典型办公空间中,以通过能量回收呼吸机(ERV)。瞬态系统控制策略适用于办公室中的两种不同的气流条件:传统的天花板供应系统和地板下的空气分配系统。与固定的室外空气吸入率(称为恒定风量通风)相比,与CO_2 DCV关联的优化通风系统分别节省了11.6%和24.1%的能源。两个通风系统在节能效果上的差异是由于占用区域的通风效率差异所致。通风速率和通风效率对ERV的能量损失有重大影响。因此,根据具有适当气流模式的CO_2 DCV系统优化通风率,除了可以节省能源外,还有助于创造和维持健康舒适的环境。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号