首页> 外文期刊>International Journal of Heat and Mass Transfer >Thermal management of electronic devices using pin-fin based cascade microencapsulated PCM/expanded graphite composite
【24h】

Thermal management of electronic devices using pin-fin based cascade microencapsulated PCM/expanded graphite composite

机译:使用基于针鳍的级联微囊化PCM /膨胀石墨复合材料对电子设备进行热管理

获取原文
获取原文并翻译 | 示例
           

摘要

Microencapsulated phase change material (MEPCM) could be used for effective thermal management of electronic devices due to its large latent heat, phase change at nearly constant temperature, low volume expansion, and anti-leakage characteristics. Unfortunately, the low thermal conductivity of MEPCM hinders the heat dissipation rate from electronic devices especially at high heat flux conditions. Although the heat transfer capability of MEPCM could be accelerated by adding expanded graphite (EG) or inserting high thermal conductivity pin-fins, the latent heat energy storage capacity of MEPCM composite becomes less which reduces the corresponding operating time of limiting the electronic device temperature rise through solid-liquid phase change. In purpose of clarifying and optimizing this tradeoff effect on electronic device thermal management using MEPCM-EG composite with pin-fins, a numerical study is carried out through 3D lattice Boltzmann method with respect to different pin-fin configurations, EG content, PCM melting temperature, and heat flux conditions. The results indicate that the pin-fin array with medium fin number and fin thickness is beneficial for balancing the increased heat transfer capability and the decreased latent heat of MEPCM so that its optimum thermal performance is achieved. At the early working stage of electronic device, the pin-fin based MEPCM is demonstrated to be more effective than MEPCM-EG composite for controlling the electronic device temperature rise because of the direct contact between pin-fins and electronic heat sink base. However, as the electronic device working time evolves, the MEPCM-EG composite with network heat transfer channel is found to be more efficient for dissipating heat out of electronic device due to the relatively high average thermal conductivity throughout the whole heat sink system. Furthermore, the thermal performance of electronic device is found to be improved by inserting MEPCM-EG composite with cascade melting temperature decreasing from the heat sink base to heat sink cover.
机译:微胶囊相变材料(MEPCM)由于其潜热大,在几乎恒定温度下的相变,低体积膨胀和抗泄漏特性而可用于电子设备的有效热管理。不幸的是,MEPCM的低导热率阻碍了电子设备的散热率,特别是在高热通量条件下。尽管可以通过添加膨胀石墨(EG)或插入高导热率的翅片来提高MEPCM的传热能力,但MEPCM复合材料的潜热能量存储能力却变小,从而减少了相应的操作时间,从而限制了电子设备的温度上升通过固液相变。为了阐明和优化使用带有针鳍的MEPCM-EG复合材料对电子器件热管理的权衡效果,通过3D格子Boltzmann方法针对不同的针鳍结构,EG含量,PCM熔化温度进行了数值研究,以及热通量条件。结果表明,翅片数和翅片厚度适中的针翅阵列有利于平衡MEPCM提高的传热能力和降低的潜热,从而达到最佳的热性能。在电子设备的早期工作阶段,由于针鳍和电子散热器基座之间的直接接触,基于针鳍的MEPCM被证明比MEPCM-EG复合材料更有效地控制电子设备的温度上升。然而,随着电子设备工作时间的发展,由于整个散热器系统的平均导热系数较高,因此带有网络传热通道的MEPCM-EG复合材料更有效地将热量从电子设备中散发出去。此外,发现通过将温度逐渐降低的MEPCM-EG复合材料从散热器底座插入散热器盖,可以改善电子设备的热性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号