...
首页> 外文期刊>International Journal of Heat and Mass Transfer >Effects of the squealer winglet structures on the heat transfer characteristics and aerodynamic performance of turbine blade tip
【24h】

Effects of the squealer winglet structures on the heat transfer characteristics and aerodynamic performance of turbine blade tip

机译:斜翼结构对涡轮叶片尖端传热特性及空气动力学性能的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The heat transfer characteristics and aerodynamic performance of three different squealer winglet structures based on GE-E3 turbine rotor squealer tip are numerically investigated, which is compared with the conventional squealer tip. The Reynolds-Averaged Navier-Stokes (RANS) solutions and standard k-omega turbulence model are solved to analyze the aerothermal performance of rotor tip with different squealer winglet structures. The numerical method is verified with experimental data. The numerical results show that the area-averaged heat transfer coefficient of squealer winglet structure at the pressure side, suction side and both the pressure and suction side are respectively reduced by 12.2%, 17.1% and 19.8% compared to the conventional squealer tip. The squealer winglet structure on the blade tip mostly influence the flow structures inside the cavity with the decreased strength of the pressure side corner vortex and the scraping vortex, which reduce the heat transfer coefficient and the leakage flow rate of the blade tip. The squealer winglet structure at the pressure side is found to increase the total pressure loss coefficient of the rotor blade by 8.5% in contrast to the conventional squealer tip. However, the squealer winglet structure at the suction side and both sides effectively reduce the total pressure loss coefficient by 8.5% and 2.5% respectively. The results reveal that squealer winglet structure at the suction side has the tradeoff of the heat transfer characteristics and aerodynamic performance among four different turbine rotor squealer tip profiles. (C) 2019 Elsevier Ltd. All rights reserved.
机译:基于Ge-E3涡轮机转子斜柱尖端的三种不同耳刀翼形结构的传热特性和空气动力学性能进行了数量地研究,与传统的耳器尖端进行比较。 Reynolds平均的Navier-Stokes(RANS)解决方案和标准K-OMEGA湍流模型得到解决,以分析带有不同塞米氏翅翼结构的转子尖端的空气性能。用实验数据验证数值方法。数值结果表明,与常规耳器尖端相比,压力侧,吸力侧和压力和吸入侧的压力侧,吸力侧和吸力侧的耳翼结构的区域平均传热系数分别降低12.2%,17.1%和19.8%。叶片尖端上的耳翼翼形结构主要影响腔内的流动结构,随着压力侧拐角涡流的降低和刮涡涡流的强度降低,这降低了叶片尖端的传热系数和泄漏流速。发现压力侧的静脉翅翼结构,与传统的耳骨尖端相比,将转子叶片的总压力损失系数增加了8.5%。然而,吸入侧和双面的静脉翅翼结构分别有效地将总压力损失系数降低了8.5%和2.5%。结果表明,抽吸侧的耳脉翼形结构具有传热特性的折衷和四种不同的涡轮机转子耳钉尖端轮廓之间的传热特性和空气动力学性能。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号