首页> 外文期刊>International Journal of Heat and Mass Transfer >Microscale layering of liquid and vapor phases within microstructures for a new generation two-phase heat sink
【24h】

Microscale layering of liquid and vapor phases within microstructures for a new generation two-phase heat sink

机译:新一代两相散热器的微观结构内液相和气相的微尺度分层

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, a new heat sink architecture is introduced that operates at two different phase change heat transfer modes. At low wall superheat temperatures, the heat sink operates under the thin film evaporation heat transfer mode and then transitions to the boiling heat transfer mode when the wall superheat temperature increases. This unique function is enabled through constraining the liquid and vapor phases into separate domains using a capillary-controlled meniscus formed within a hierarchical 3D structure. The structure is designed to form thin liquid layers between vertically oriented menisci across which the liquid is evaporated into neighboring vapor channels. The entire structure is then capped by a hydrophobic vapor-permeable membrane to fully confine the liquid layers while allowing vapor to pass through the membrane. At low wall superheats, the liquid layers directly evaporate into the vapor channels. In this operation mode, the heat flux was linearly increased to a maximum of 54 W/cm~2 at approximately 8 ℃ wall superheat temperature, corresponding to a heat transfer coefficient of approximately 62 kW/m~2 K. The heat transfer coefficient only slightly declined with increasing the wall superheat temperature but substantially improved as the liquid supply pressure was increased. Increasing the superheat temperature beyond 7-9 ℃ resulted in transition to the boiling heat transfer mode with a pronounced increase in surface temperature fluctuations. This transition to boiling results in a decline in the heat transfer coefficient because the meniscus formed between the liquid and vapor spaces breaks down. However, the heat removal capacity is significantly increased, and a critical heat flux of about 300 W/cm~2 is reached at <30 ℃ wall superheat temperature, corresponding to a heat transfer coefficient of approximately 100 kW/m~2 K.
机译:在这项研究中,介绍了一种新的散热器架构,该架构以两种不同的相变传热模式运行。在低壁过热温度下,散热器在薄膜蒸发传热模式下运行,然后在壁过热温度升高时转变为沸腾传热模式。通过使用在分层3D结构中形成的毛细管控制的弯液面将液相和气相限制在单独的区域中,可以启用此独特功能。该结构被设计为在垂直方向的弯液面之间形成薄的液体层,液体通过该弯液面蒸发进入相邻的蒸汽通道。然后,整个结构被疏水性透湿膜覆盖,以完全限制液体层,同时允许蒸汽通过该膜。在低壁过热下,液体层直接蒸发到蒸气通道中。在此操作模式下,在大约8℃的壁过热温度下,热通量线性增加至最大值54 W / cm〜2,对应的传热系数约为62 kW / m〜2K。仅传热系数随着壁过热温度的升高略有下降,但随着液体供应压力的增加而显着改善。将过热温度提高到7-9℃以上会导致过渡到沸腾传热模式,表面温度波动会明显增加。由于在液体和蒸气空间之间形成的弯月面破裂,这种向沸腾的转变导致传热系数下降。然而,其排热能力显着提高,并且在<30℃的壁过热温度下达到了约300 W / cm〜2的临界热通量,对应的传热系数约为100 kW / m〜2K。

著录项

  • 来源
  • 作者单位

    Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, United States;

    Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, United States;

    Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号