首页> 外文期刊>International Journal of Heat and Mass Transfer >On the significance of developing boundary layers in integrated water cooled 3D chip stacks
【24h】

On the significance of developing boundary layers in integrated water cooled 3D chip stacks

机译:关于在集成水冷3D芯片堆栈中开发边界层的重要性

获取原文
获取原文并翻译 | 示例
           

摘要

We present in this paper a fundamental hydrothermal investigation of the next generation interlayer integrated water cooled three-dimensional (3D) chip stacks, with high volumetric heat generation. Such investigation of flow through microcavities with embedded heat transfer structures such as micro pin-fin arrays and microchannels is crucial for the successful realization of 3D chip stacks. We focus mainly on the complex physics of the entrance region of the cooling microcavities in order to assess its importance. The flow and heat transfer in the entrance region is strongly influenced by developing boundary layers and, as we show herein, the development lengths can occupy a significant portion of the microcavity due to the size restrictions of the 3D chip stack. These effects make a fundamental understanding of conjugate heat transfer in microcavities with heat transfer structures a necessity. The flow field and heat transfer in the entrance region are characterized by means of correlations determining the effective coolant permeability as well as the heat transfer coefficient as a function of the streamwise coordinate x, the flow Reynolds number (Re) and the Prandtl number. Based on a thermal non-equilibrium porous medium model relying on these results, a substantially improved estimation of pressure drop and temperature distribution inside the chip stack is realized. The modeling results are validated against measurements on a 3D chip stack simulator. The range of flow rates and thermal loads in the hot spots of the chip stack, over which it is crucial to consider the developing hydrothermal effects, are analyzed and discussed in detail. Moreover, microchannel and micro pin-fin structures are compared, showing more than 20% increased performance of the latter for all operating conditions investigated.
机译:我们在本文中介绍了具有高体积热量产生的下一代中间层集成水冷三维(3D)芯片堆栈的基本水热研究。对具有嵌入式传热结构(例如微针鳍阵列和微通道)的微腔中流的这种研究对于成功实现3D芯片堆栈至关重要。为了评估其重要性,我们主要关注冷却微腔入口区域的复杂物理学。入口区域中的流动和传热受边界层形成的强烈影响,并且正如我们在此处所示,由于3D芯片堆叠的尺寸限制,显影长度会占据微腔的很大一部分。这些效果使对具有传热结构的微腔中共轭传热的基本理解成为必要。入口区域内的流场和热传递通过相关性来确定,这些相关性决定了有效的冷却剂渗透性以及热传递系数,该系数是流向坐标x,流雷诺数(Re)和普朗特数的函数。基于依赖于这些结果的热非平衡多孔介质模型,实现了芯片堆叠内部的压降和温度分布的显着改善的估计。针对3D芯片堆栈模拟器上的测量结果对建模结果进行了验证。详细分析和讨论了芯片堆叠热点中的流速和热负荷范围,在此范围内考虑所产生的水热效应至关重要。此外,比较了微通道和微针鳍结构,显示了在所研究的所有工作条件下后者的性能提高了20%以上。

著录项

  • 来源
    《International Journal of Heat and Mass Transfer》 |2012年第20期|p.5222-5232|共11页
  • 作者单位

    Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland;

    Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland;

    Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland;

    IBM Research GmbH, Zurich Research Laboratory, 8803 Ruschlikon, Switzerland;

    IBM Research GmbH, Zurich Research Laboratory, 8803 Ruschlikon, Switzerland;

    Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    3D integrated water cooling; chip stack; CFD; developing flow; micro cooling structure; porous medium;

    机译:3D集成水冷;筹码堆栈差价合约发展流;微冷却结构;多孔介质;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号