首页> 外文期刊>International journal of hydrogen energy >Blast wave from a high-pressure gas tank rupture in a fire: Stand-alone and under-vehicle hydrogen tanks
【24h】

Blast wave from a high-pressure gas tank rupture in a fire: Stand-alone and under-vehicle hydrogen tanks

机译:高压储气罐中的爆炸波在大火中破裂:独立和车载氢气罐

获取原文
获取原文并翻译 | 示例
           

摘要

This study addresses one of knowledge gaps in hydrogen safety science and engineering, i.e. a predictive model for calculation of deterministic separation distances defined by the parameters of a blast wave generated by a high-pressure gas storage tank rupture in a fire. An overview of existing methods to calculate stored in a tank internal (mechanical) energy and a blast wave decay is presented. Predictions by the existing technique and an original model developed in this study, which accounts for the real gas effects and combustion of the flammable gas released into the air (chemical energy), are compared against experimental data on high-pressure hydrogen tank rupture in the bonfire test. The main reason for a poor predictive capability of the existing models is the absence of combustion contribution to the blast wave strength. The developed methodology is able to reproduce experimental data on a blast wave decay after rupture of a stand-alone hydrogen tank and a tank under a vehicle. In this study, the chemical energy is dynamically added to the mechanical energy and is accounted for in the energy-scaled non-dimensional distance. The fraction of the total chemical energy of combustion released to feed the blast wave is 5% and 9%, however it is 1.4 and 30 times larger than the mechanical energy in the standalone tank test and the under-vehicle tank test respectively. The model is applied as a safety engineering tool to four typical hydrogen storage applications, including on-board vehicle storage tanks and a stand-alone refuelling station storage tank. Harm criteria to people and damage criteria for buildings from a blast wave are selected by the authors from literature to demonstrate the calculation of deterministic separation distances. Safety strategies should exclude effects of fire on stationaxy storage vessels, and require thermal protection of on-board storage to prevent dangerous consequences of high-pressure tank rupture in a fire. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
机译:这项研究解决了氢安全科学和工程学中的一个知识空白,即用于计算确定性分离距离的预测模型,该确定性距离由火灾中高压储气罐破裂产生的爆炸波的参数定义。概述了现有的计算储罐内部(机械)能量和爆炸波衰减的方法。通过现有技术的预测和本研究开发的原始模型的预测,将真实的气体效应和释放到空气中的可燃气体(化学能)的燃烧考虑在内,与高压氢气罐破裂的实验数据进行了比较。篝火测试。现有模型的预测能力较差的主要原因是缺乏燃烧对爆炸波强度的贡献。所开发的方法能够重现独立氢气罐和车辆下方的罐破裂后爆炸波衰减的实验数据。在这项研究中,化学能被动态地添加到机械能中,并在能量标度的无量纲距离中得到解释。释放给爆炸波的燃烧总化学能的百分比为5%和9%,但是分别比独立储罐测试和车载储罐测试的机械能大1.4和30倍。该模型被用作安全工程工具,应用于四种典型的氢气存储应用,包括车载车辆储罐和独立的加油站储罐。作者从文献中选择了对人的伤害标准和对爆炸波造成的建筑物破坏的标准,以证明确定性分隔距离的计算。安全策略应排除火对固定式储物容器的影响,并要求对车载储物进行热保护,以防止火灾中高压储罐破裂的危险后果。 Hydrogen Energy Publications,LLC版权所有(C)2015。由Elsevier Ltd.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号