首页> 外文期刊>Journal of aerospace engineering >Behaviors of Hypersonic Wing under Aerodynamic Heating
【24h】

Behaviors of Hypersonic Wing under Aerodynamic Heating

机译:空气动力学加热下高超声翼的行为

获取原文
获取原文并翻译 | 示例
           

摘要

The coupled problem of aerodynamic heating and structural heat transfer occupies a very important position in the field of aerospace engineering applications because it directly affects the accurate prediction of aerothermal loads and structural deformation. This paper develops a fluid-thermal-structural coupling framework for the investigation of aerothermalelastic problems in hypersonic flow. A loosely coupled analysis strategy equipped with both the constant and adaptive coupling time step size approaches is adopted to integrate an in-house developed computational fluid dynamics (CFD) code using the finite element solver Abaqus and to perform coupling simulations based on CFD/computational thermal and structural dynamics (CTSD). The accuracy, reliability, and capability of the aerodynamic heating and fluid-thermal-structural coupling analysis methods in this framework have been validated by a spherically blunted cone and a cylindrical leading-edge model in a hypersonic environment. A typical low-aspect ratio hypersonic wing is adopted as the computational model to study in detail the impact of sustained aerothermodynamic loads on the aeroheating process, structural deformation characteristics, and aerodynamic performance. The results indicate that the aerodynamic heating effect obviously weakens the structure stiffness and, thereby, directly leads to a significant increment in wing structural deformation. Consequently, the pressure distribution and aerodynamic coefficients of the wing also change significantly after aerothermoelastic deformation. Therefore, the influence of aerodynamic heating on the aerothermoelastic behaviors of a hypersonic wing should be considered seriously in the design stage to avoid unaccepted structural deformation and aerodynamic loss in real flight. Moreover, the loosely coupled analysis strategy equipped with the adaptive coupling time step size approach can be used as a highly efficient simulation method for practical fluid-thermal-structural coupling problems.
机译:空气动力学加热和结构热传递的耦合问题占据了航空航天工程应用领域的非常重要的位置,因为它直接影响了吸气载荷和结构变形的准确预测。本文开发了一种流体 - 热结构耦合框架,用于研究过度流动的空气弹性问题。采用具有恒定和自适应耦合时间步长方法的松散耦合分析策略,用于使用有限元求解器ABAQUS集成内部开发的计算流体动力学(CFD)代码,并根据CFD /计算热量执行耦合模拟和结构动态(CTSD)。通过在超声波环境中通过球形钝的锥体和圆柱形前缘模型验证了该框架中的空气动力学加热和流体 - 热结构耦合分析方法的精度,可靠性和能力。采用典型的低纵横比超音翼作为计算模型,以详细研究持续的空鹭热力载荷对机动过程,结构变形特性和空气动力学性能的影响。结果表明,空气动力学加热效果明显削弱了结构刚度,从而直接导致机翼结构变形的显着增量。因此,在空气热弹性变形之后,机翼的压力分布和空气动力学系数也会显着变化。因此,在设计阶段,应当严重地考虑空气动力加热对高超声翼的空气热弹性行为的影响,以避免真正飞行中的结构变形和空气动力学损失。此外,配备有自适应耦合时间步长方法的松散耦合分析策略可以用作实际流体 - 热结构耦合问题的高效模拟方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号