...
首页> 外文期刊>Journal of Applied Physics >Anisotropy of selective epitaxy in nanoscale-patterned growth: GaAs nanowires selectively grown on a SiO_2-patterned (001) substrate by molecular-beam epitaxy
【24h】

Anisotropy of selective epitaxy in nanoscale-patterned growth: GaAs nanowires selectively grown on a SiO_2-patterned (001) substrate by molecular-beam epitaxy

机译:纳米尺度生长中选择性外延的各向异性:通过分子束外延选择性生长在SiO_2图案(001)衬底上的GaAs纳米线

获取原文
获取原文并翻译 | 示例
           

摘要

Anisotropic selective epitaxy in nanoscale-patterned growth (NPG) by molecular-beam epitaxy is investigated on a 355 nm period two-dimensional array of circular holes fabricated in a 30-nm-thick SiO_2 film on a GaAs(001) substrate. The hole diameter ranged from 70 to 150 nm. The small hole diameter and the very thin masking layer stimulated lateral growth over the SiO_2 surface at an early stage of selective epitaxy on this patterned substrate. Lateral overgrowth associated with selective epitaxy, however, did not proceed isotropically along the circular boundary between the open substrate surface and the SiO_2 mask. There was preferential growth direction parallel to < 111 >B. This anisotropy in the selective epitaxy resulted in the formation of a nanoscale, nontapered, straight-wire-type epitaxial layer (GaAs nanowires), which had a length of up to 1.8 μm for a nominal 200 nm deposition. Every GaAs nanowire had a hexagonal prismatic shape directed along < 111 >B and was surrounded by six (110) side walls. The anisotropy of selective epitaxy and faceting in NPG were affected by the profile of the SiO_2 mask and are interpreted using a minimization of the total surface energy for equilibrium crystal shape.
机译:在GaAs(001)衬底上30 nm厚的SiO_2薄膜中,在355 nm周期的圆孔二维阵列上研究了分子束外延法在纳米级图形生长(NPG)中的各向异性选择性外延。孔径范围为70至150nm。小孔直径和非常薄的掩膜层在该图案化衬底上的选择性外延的早期刺激了SiO_2表面上的横向生长。然而,与选择性外延有关的横向过度生长并未沿着开放的衬底表面和SiO_2掩模之间的圆形边界各向同性地进行。平行于<111> B存在优先生长方向。选择性外延中的这种各向异性导致形成纳米级,无锥度的直线型外延层(GaAs纳米线),对于标称200 nm沉积,其长度可达1.8μm。每条GaAs纳米线均具有沿<111> B定向的六边形棱柱形状,并被六(110)个侧壁围绕。 NPG中选择性外延和刻面的各向异性受SiO_2掩模的轮廓影响,并通过使总表面能最小化来解释平衡晶体形状。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号