...
首页> 外文期刊>Journal of Applied Physics >Physics of trap assisted photomultiplication in vertical organic photoresistors
【24h】

Physics of trap assisted photomultiplication in vertical organic photoresistors

机译:垂直有机光致抗蚀器中陷阱辅助光锁定的物理

获取原文
获取原文并翻译 | 示例
           

摘要

Several experimental groups have reported recently an intriguing high level of gain (Photomultiplication) in vertical organic photoresistance (as well as in other technologies, such as perovskite for instance). This mechanism is sometimes named as "Trap-Assisted Photomultiplication." This paper investigates the origin of this mechanism by means of drift diffusion simulations, analytical theory, and experiments, considering the particular case of PCDTBT:PC_(60)BM photoresistors, although some conclusions are likely to apply in other technologies. It turns out that an excess of charges (induced by electron-hole carrier generation) may trigger additional carrier injection, leading to photomultiplication, under specific circumstances. We call this mechanism "gain by injection enhancement." Electron (respectively, hole) trapping for P only (respectively, N only) devices can play this role efficiently. As these additional carriers came from contacts, significant dark current injection is thus needed to achieve a large value of gain, explaining why this mechanism can occur only in P (or N) only photoresistors (and not photodiodes or intrinsic photoresistors, i.e., with midgap contacts). In such devices, however, the detectivity remains intrinsically limited by the high level of dark injection currents required to get gain, and consequently, this type of device may be interesting, in particular, in technologies where it is not possible to achieve low dark currents using photodiodes. However, penalized by the slow trap dynamics, the cut-off frequency of these devices remains extremely low (<100 Hz). Also, this gain takes a high value only at low irradiance, making photoresistor responsivity light dependent. All these results bring new light in analyzing and optimizing photoresistors, opening a large field of investigation to take advantage of gain by injection enhancement.
机译:几种实验组最近报道了垂直有机光致抗蚀剂(以及其他技术中的垂直有机光致抗蚀剂中的高水平增益(光倍增),例如钙钛矿)。这种机制有时被命名为“陷阱辅助光锁相”。本文通过漂移扩散模拟,分析理论和实验研究了这种机制的起源,考虑到PCDTBT的特定情况:PC_(60)BM光致阻挡者,尽管某些结论可能适用于其他技术。事实证明,在特定情况下,过量的电荷(由电子孔载体产生)可以触发额外的载波注射,导致光倍增,导致光倍增。我们称这种机制“通过注射增强。”电子(分别,孔)仅用于P仅(分别为n)设备可以有效地发挥此作用。由于这些额外的载体来自触点,因此需要显着的暗电流注入来实现大的增益值,解释为什么仅在P(或n)的光致抗蚀剂(而不是光电二极管或本征光电阻挡器中,所述机构也可以发生这种机制,因此联系人)。然而,在这种装置中,探测率仍然受到获得增益所需的高水平的暗进入电流的固有限制,因此,这种类型的设备可能是有趣的,特别是在不可能实现低暗电流的技术中使用光电二极管。但是,通过缓慢的陷阱动力学惩罚,这些设备的截止频率保持极低(<100 Hz)。此外,该增益仅在低辐照度下占据高值,使得光致电阻器响应敏感依赖于光。所有这些结果都带来了新的光线分析和优化光致抗蚀剂,打开大型调查领域,以利用注射增强利用增益。

著录项

  • 来源
    《Journal of Applied Physics》 |2020年第5期|055502.1-055502.12|共12页
  • 作者单位

    Institut d'Optique Graduate School Universite de Lyon UJM-Saint-Etienne CNRS UMR 5516 Laboratoire Hubert Curien 42023 Saint-Etienne France;

    Institut d'Optique Graduate School Universite de Lyon UJM-Saint-Etienne CNRS UMR 5516 Laboratoire Hubert Curien 42023 Saint-Etienne France;

    Univ. Bordeaux IMS CNRS UMR 5218 Bordeaux INP ENSCBP F-33405 Talence France;

    Univ. Bordeaux IMS CNRS UMR 5218 Bordeaux INP ENSCBP F-33405 Talence France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号