首页> 外文期刊>Journal of Computational Neuroscience >Vestibular integrator neurons have quadratic functions due to voltage dependent conductances
【24h】

Vestibular integrator neurons have quadratic functions due to voltage dependent conductances

机译:由于电压依赖性电导,前庭积分神经元具有二次函数

获取原文
获取原文并翻译 | 示例
       

摘要

The nonlinear properties of the dendrites of the prepositus hypoglossi nucleus (PHN) neurons are essential for the operation of the vestibular neural integrator that converts a head velocity signal to one that controls eye position. A novel system of frequency probing, namely quadratic sinusoidal analysis (QSA), was used to decode the intrinsic nonlinear behavior of these neurons under voltage clamp conditions. Voltage clamp currents were measured at harmonic and interactive frequencies using specific nonoverlapping stimulation frequencies. Eigenanalysis of the QSA matrix reduces it to a remarkably compact processing unit, composed of just one or two dominant components (eigenvalues). The QSA matrix of rat PHN neurons provides signatures of the voltage dependent conductances for their particular dendritic and somatic distributions. An important part of the nonlinear response is due to the persistent sodium conductance (g_(Nap))> which is likely to be essential for sustained effects needed for a neural integrator. It was found that responses in the range of 10 mV peak to peak could be well described by quadratic nonlinearities suggesting that effects of higher degree nonlinearities would add only marginal improvement. Therefore, the quadratic response is likely to sufficiently capture most of the nonlinear behavior of neuronal systems except for extremely large synaptic inputs. Thus, neurons have two distinct linear and quadratic functions, which shows that piecewise linear+quadratic analysis is much more complete than just piecewise linear analysis; in addition quadratic analysis can be done at a single holding potential. Furthermore, the nonlinear neuronal responses contain more frequencies over a wider frequency band than the input signal. As a consequence, they convert limited amplitude and bandwidth input signals to wider bandwidth and more complex output responses. Finally, simulations at subthreshold membrane potentials with realistic PHN neuron models suggest that the quadratic functions are fundamentally dominated by active dendritic structures and persistent sodium conductances.
机译:垂体下丘脑核(PHN)神经元树突的非线性特性对于前庭神经积分器的操作至关重要,前者积分器将头部速度信号转换为控制眼球位置的信号。一种新颖的频率探测系统,即二次正弦分析(QSA),用于在电压钳位条件下解码这些神经元的固有非线性行为。使用特定的非重叠激励频率,在谐波和交互频率下测量电压钳电流。 QSA矩阵的特征分析将其简化为仅由一个或两个主要成分(特征值)组成的非常紧凑的处理单元。大鼠PHN神经元的QSA矩阵为其特定的树突状和体细胞分布提供了电压依赖性电导的特征。非线性响应的重要部分是由于持续的钠电导(g_(Nap))>,这对于神经积分器所需的持续效应可能是必不可少的。已经发现,二次非线性可以很好地描述10 mV峰到峰范围内的响应,这表明更高程度的非线性效应只会增加边际改进。因此,二次反应可能会充分捕获神经系统的大多数非线性行为,但突触输入非常大。因此,神经元具有两个截然不同的线性和二次函数,这表明分段线性+二次分析比仅分段线性分析要完整得多。此外,可以在单个保持电势下进行二次分析。此外,非线性神经元响应在比输入信号更宽的频带中包含更多频率。结果,它们将有限的幅度和带宽输入信号转换为更宽的带宽和更复杂的输出响应。最后,使用逼真的PHN神经元模型对亚阈值膜电位进行的模拟表明,二次函数基本上由活跃的树突结构和持久的钠电导控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号