首页> 外文期刊>Journal of Computational Neuroscience >A model of non-elemental olfactory learning in Drosophila
【24h】

A model of non-elemental olfactory learning in Drosophila

机译:果蝇中非元素嗅觉学习的模型

获取原文
获取原文并翻译 | 示例
           

摘要

The pathways for olfactory learning in the fruitfly Drosophila have been extensively investigated, with mounting evidence that that the mushroom body is the site of the olfactory associative memory trace (Heisenberg, Nature 4:266-275, 2003; Gerber et al., Curr Opin Neurobiol 14:737-744, 2004). Heisenberg's description of the mushroom body as an associative learning device is a testable hypothesis that relates the mushroom body's function to its neural structure and input and output pathways. Here, we formalise a rel atively complete computational model of the network interactions in the neural circuitry of the insect anten-nal lobe and mushroom body, to investigate their role in olfactory learning, and specifically, how this might support learning of complex (non-elemental; Giurfa, Curr Opin Neuroethol 13:726-735, 2003) discrimina tions involving compound stimuli. We find that the circuit is able to learn all tested non-elemental para digms. This does not crucially depend on the number of Kenyon cells but rather on the connection strength of projection neurons to Kenyon cells, such that the Kenyon cells require a certain number of coincident inputs to fire. As a consequence, the encoding in the mushroom body resembles a unique cue or configural representation of compound stimuli (Pearce, Psychol Rev 101:587-607, 1994). Learning of some conditions, particularly negative patterning, is strongly affected by the assumption of normalisation effects occurring at the level of the antennal lobe. Surprisingly, the learning capacity of this circuit, which is a simplification of the actual circuitry in the fly, seems to be greater than the capacity expressed by the fly in shock-odour association experiments (Young et al. 2010).
机译:果蝇果蝇中的嗅觉学习途径已被广泛研究,越来越多的证据表明蘑菇体是嗅觉联想记忆痕迹的部位(Heisenberg,Nature 4:266-275,2003; Gerber等,Curr Opin Neurobiol 14:737-744,2004)。海森堡将蘑菇体描述为一种关联学习设备,这是一个可检验的假设,该假设将蘑菇体的功能与其神经结构以及输入和输出路径相关联。在这里,我们对昆虫触角叶和蘑菇体的神经回路中网络相互作用的相对完整的计算模型进行形式化,以研究它们在嗅觉学习中的作用,尤其是它如何支持复杂的(非- ;元素; Giurfa,Curr Opin Neuroethol 13:726-735,2003)判别涉及复合刺激。我们发现该电路能够学习所有经过测试的非基本范式。这并不是关键性地取决于Kenyon细胞的数量,而是取决于投射神经元与Kenyon细胞的连接强度,因此Kenyon细胞需要一定数量的一致输入来发射。结果,蘑菇体内的编码类似于复合刺激的独特提示或结构表示(Pearce,Psychol Rev 101:587-607,1994)。某些条件的学习,特别是负构图,受到在触角叶水平发生归一化效应的假设的强烈影响。出人意料的是,这条电路的学习能力(是对飞行中实际电路的简化)似乎要大于飞行中在异味关联实验中表达的能力(Young等人,2010年)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号