...
首页> 外文期刊>Journal of Food Science >Mathematical Modeling and Microbiological Verification of Ohmic Heating of a Multicomponent Mixture of Particles in a Continuous Flow Ohmic Heater System with Electric Field Parallel to Flow
【24h】

Mathematical Modeling and Microbiological Verification of Ohmic Heating of a Multicomponent Mixture of Particles in a Continuous Flow Ohmic Heater System with Electric Field Parallel to Flow

机译:电场平行于流动的连续流动欧姆加热系统中颗粒多组分混合物欧姆加热的数学建模和微生物学验证

获取原文
获取原文并翻译 | 示例
           

摘要

To accomplish continuous flow ohmic heating of a low-acid food product, sufficient heat treatment needs to be delivered to the slowest-heating particle at the outlet of the holding section. This research was aimed at developing mathematical models for sterilization of a multicomponent food in a pilot-scale ohmic heater with electric-field-oriented parallel to the flow and validating microbial inactivation by inoculated particle methods. The model involved 2 sets of simulations, one for determination of fluid temperatures, and a second for evaluating the worst-case scenario. A residence time distribution study was conducted using radio frequency identification methodology to determine the residence time of the fastest-moving particle from a sample of at least 300 particles. Thermal verification of the mathematical model showed good agreement between calculated and experimental fluid temperatures (P > 0.05) at heater and holding tube exits, with a maximum error of 0.6 ℃. To achieve a specified target lethal effect at the cold spot of the slowest-heating particle, the length of holding tube required was predicted to be 22 m for a 139.6 ℃ process temperature with volumetric flow rate of 1.0 × 10~(-4) m~3/s and 0.05 m in diameter. To verify the model, a microbiological validation test was conducted using at least 299 chicken-alginate particles inoculated with Clostridium sporogenes spores per run. The inoculated pack study indicated the absence of viable microorganisms at the target treatment and its presence for a subtarget treatment, thereby verifying model predictions.
机译:为了实现低酸食品的连续流动欧姆加热,需要在保持部分的出口处对最慢加热的颗粒进行充分的热处理。这项研究旨在开发一种数学模型,用于在中试规模的欧姆加热器中对多组分食品进行灭菌,其电场方向平行于流动方向,并通过接种颗粒法验证微生物的灭活作用。该模型涉及2组模拟,一组用于确定流体温度,另一组用于评估最坏情况。使用射频识别方法进行了停留时间分布研究,以确定至少300个颗粒样品中运动最快的颗粒的停留时间。数学模型的热验证表明,加热器和保温管出口处的计算流体温度与实验流体温度之间具有良好的一致性(P> 0.05),最大误差为0.6℃。为了在加热最慢的粒子的冷点达到指定的目标致死效果,在139.6℃的工艺温度下,所需的保持管的长度预计为22 m,体积流量为1.0×10〜(-4)m约3 / s,直径为0.05 m。为了验证该模型,每轮至少接种了299株海生孢子虫孢子的鸡藻酸盐颗粒,进行了微生物学验证测试。接种包装研究表明目标治疗中不存在活微生物,而亚目标治疗中则存在活微生物,从而验证了模型预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号