...
首页> 外文期刊>Journal of Heat Transfer >Temperature Scalings and Profiles in Forced Convection Turbulent Boundary Layers
【24h】

Temperature Scalings and Profiles in Forced Convection Turbulent Boundary Layers

机译:强迫对流湍流边界层的温度尺度和轮廓

获取原文
获取原文并翻译 | 示例
           

摘要

Based on the theory of similarity analysis and the analogy between momentum and energy transport equations, the temperature scalings have been derived for forced convection turbulent boundary layers. These scalings are shown to be able to remove the effects of Reynolds number and the pressure gradient on the temperature profile. Furthermore, using the near-asymptotic method and the scalings from the similarity analysis, a power law solution is obtained for the temperature profile in the overlap region. Subsequently, a composite temperature profile is found by further introducing the functions in the wake region and in the near-the-wall region. The proposed composite temperature profile can describe the entire boundary layer from the wall all the way to the outer edge of the turbulent boundary layer at finite Re number. The experimental data and direct numerical simulation (DNS) data with zero pressure gradient and adverse pressure gradient are used to confirm the accuracy of the scalings and the proposed composite temperature profiles. Comparison with the theoretical profiles by Kader (1981, "Temperature and Concentration Profiles in Fully Turbulent Boundary Layers," Int. J. Heat Mass Transfer, 24, pp. 1541-1544; 1991, "Heat and Mass Transfer in Pressure-Gradient Boundary Layers," Int. J. Heat Mass Transfer, 34, pp. 2837-2857) shows that the current theory yields a higher accuracy. The error in the mean temperature profile is within 5% when the present theory is compared to the experimental data. Meanwhile, the Stanton number is calculated using the energy and momentum integral equations and the newly proposed composite temperature profile. The calculated Stanton number is consistent with previous experimental results and the DNS data, and the error of the present prediction is less than 5%. In addition, the growth of the thermal boundary layer is obtained from the theory and the average error is less than 5% for the range of Reynolds numbers between 5 × 10~5 and 5 × 10~6 when compared with the empirical correlation for the experimental data of isothermal boundary layer conditions.
机译:基于相似性分析的理论以及动量和能量传输方程之间的类比,得出了强迫对流湍流边界层的温度标度。这些标度显示出能够消除雷诺数和压力梯度对温度分布的影响。此外,使用近似渐近方法和基于相似度分析的缩放比例,获得了重叠区域温度曲线的幂律解。随后,通过在尾流区域和壁附近区域中进一步引入函数来找到复合温度曲线。所提出的复合温度曲线可以描述从墙一直到有限Re数的湍流边界层外边缘的整个边界层。使用实验数据和具有零压力梯度和逆压力梯度的直接数值模拟(DNS)数据来确认标度的准确性和所提出的复合温度曲线。与Kader(1981,“完全湍流边界层中的温度和浓度分布”,Int。J. Heat Mass Transfer,24,第1541-1544页; 1991,“压力梯度边界中的传热和传质”)的理论曲线比较Layers,“ Int.J.Heat Mass Transfer,第34页,第2837-2857页)表明,当前的理论产生了更高的精度。当将本理论与实验数据进行比较时,平均温度曲线的误差在5%以内。同时,利用能量和动量积分方程以及新提出的复合温度曲线计算斯坦顿数。计算得到的斯坦顿数与先前的实验结果和DNS数据一致,当前预测的误差小于5%。另外,热边界层的生长是从理论上获得的,与雷诺数在5×10〜5和5×10〜6之间的经验相关性相比,平均误差小于5%。等温边界层条件的实验数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号