...
首页> 外文期刊>Journal of Thermophysics and Heat Transfer >Experimental and Numerical Study of Stationary Throat Plug in Shock Tunnel
【24h】

Experimental and Numerical Study of Stationary Throat Plug in Shock Tunnel

机译:冲击波隧道固定喉塞的实验与数值研究。

获取原文
获取原文并翻译 | 示例
           

摘要

A throat plug is a device in a shock tunnel to prevent fragments, produced by the bursting of the primary diaphragm, from entering the nozzle and damaging the model. In the present study, a series of experimental and numerical studies has been carried out to investigate the flows around stationary throat plugs in a shock tunnel. For this purpose, conical, circular, and double circular stationary throat plugs that have a 19.4% areal blockage were used as the test models. The primary shock velocity was set at 1.19 km/s, and the shock generated a tailored condition when helium and air were used as the driver and driven gases at room temperature. In the experiment, the nozzle reservoir pressure and the pitot pressure at the nozzle exit were measured to examine the influence of the throat plug. It was found that, from both the experiment and the calculation, all types of the plugs generate a pressure bump in the nozzle reservoir during the transient period of interaction between the reflected shock and the plugs. After the transient period, the difference between the plug-distorted and -undistorted nozzle flows is small and can practically be neglected. When the driven tube diameter is increased in the region in which the throat plug is located, the pressure bump is almost eliminated. However, according to the calculation, the increased diameter causes an augmentation in the temporal enthalpy and the entropy at the nozzle exit. The spatial distribution of the entropy in the radial direction shows little change. The configuration of the plug has little influence on the shock-tunnel flow when the plug is placed in the region in which the plug does not distort the nozzle flow.
机译:喉塞是防震通道中的一种装置,用于防止由主隔膜破裂产生的碎片进入喷嘴并损坏模型。在本研究中,已进行了一系列实验和数值研究,以研究冲击隧道中固定喉塞周围的流动。为此,使用面积堵塞率为19.4%的圆锥形,圆形和双圆形固定喉塞作为测试模型。初级冲击速度设定为1.19 km / s,并且在室温下使用氦气和空气作为驱动器和从动气体时,该冲击产生了特定条件。在实验中,测量喷嘴储液器压力和喷嘴出口处的皮托管压力,以检查喉塞的影响。从实验和计算中发现,在反射的冲击和塞子相互作用的过渡时期,所有类型的塞子都会在喷嘴储罐中产生压力冲击。在过渡期之后,塞变形和不变形的喷嘴流量之差很小,实际上可以忽略不计。当从动管的直径在喉塞所在的区域中增大时,几乎消除了压力冲击。但是,根据计算,直径的增大导致时间焓和喷嘴出口处的熵增大。熵在径向上的空间分布几乎没有变化。当将塞子放置在塞子不会使喷嘴流量变形的区域中时,塞子的构造对冲击隧道流量几乎没有影响。

著录项

  • 来源
    《Journal of Thermophysics and Heat Transfer》 |2015年第3期|482-495|共14页
  • 作者单位

    Korea Adv Inst Sci & Technol, Dept Aerosp Engn, Taejon 305701, South Korea;

    Korea Adv Inst Sci & Technol, Dept Aerosp Engn, Taejon 305701, South Korea;

    Korea Adv Inst Sci & Technol, Dept Aerosp Engn, Taejon 305701, South Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号