首页> 外文期刊>Journal of visualization >Temperature correction for oil film interferometry with infrared camera in skin friction measurements
【24h】

Temperature correction for oil film interferometry with infrared camera in skin friction measurements

机译:油膜干涉测量与红外摄像机在皮肤摩擦测量中的温度校正

获取原文
获取原文并翻译 | 示例
           

摘要

Because drag reduction directly reduces fuel consumption, research on drag reduction techniques has become increasingly important in transport aircraft development as environmental issues have gained weight. Since skin friction contributes over half of the total aerodynamic drag on a thin airfoil at high speeds (Szodruch 2011), reducing it will obviously have a significant impact on fuel efficiency. There are many techniques for skin friction measurement, such as global luminescent oil-film method (Liu 2008; Lee et al. 2018, 2020), oil-film interferometry method (Zilliac et al. 2011; Driver et al. 2008; Bottini et al. 2015; Kurita et al. 2016), MEMS-based sensors (Ho et al. 1998), liquid crystal coatings (Kheireddine 1997), balance sensors (Allen 2012), and conventional shear-stress measurement techniques [Preston tube (Patel 1965), Clauser plot, Pitot tube (Ludwieg et al. 1950; Schoenherr 1932)]. However, it is very difficult to measure skin friction with high accuracy, because skin friction depends on boundary layer condition, and the measured values are very small. The global luminescent oil-film method utilizing luminescent intensity was developed by Liu et al. (2008) and the absolute skin friction can be globally determined with calibration, using a point-based sensor at several locations. Lee et al. (2020) indicated that the values of skin friction by the luminescent oil-film method depend on the oil-film thickness and the values agreed well with those determined using the Clauser chart method (Clauser 1956) when the oil-thickness is close to the viscous sublayer thickness (less than five wall unit). The oil film interferometry method has been widely used and has received much attention over the past 20 years because it has greater accuracy and is easier to use compared to other techniques (Naughton et al. 2002), but the oil used has a temperature dependency that reduces the skin friction measurement accuracy and it requires smooth, reflective surfaces. Therefore, surface temperature measurement simultaneously with the skin friction measurements is quite important to correct the temperature dependency (Zilliac et al. 2011). According to the Zilliac G's uncertainty analysis, temperature variations of 5℉ lead to 5.5% uncertainty in the total uncertainty is 14.9%. Although temperature sensitive paint (TSP) can be used for oil temperature correction (Bottini et al. 2015), spraying TSP on the model surface is very time-consuming. One study used an infrared point sensor to measure oil temperature (Kurita et al. 2016), but the sensor could measure at only one surface point during a wind tunnel run.
机译:由于减阻直接降低了燃料消耗,因此在运输飞机开发时,减阻技术的研究变得越来越重要,因为环境问题的重量增加。由于皮肤摩擦为高速(Szodruch 2011)的薄翼型上的总空气动力学阻力的一半增加了一半(Szodruch 2011),因此降低了对燃料效率的显着影响。皮肤摩擦测量有很多技术,例如全局发光油膜法(Liu 2008; Lee等人2018,2020),油膜干涉测量方法(Zilliac等人2011; Driver等人2008; Bottini et al。2015; kurita等人2016),基于MEMS的传感器(Ho等,1998),液晶涂料(Kheireddine 1997),平衡传感器(allen 2012)和常规剪切应力测量技术[普雷顿管(髌骨1965年),Clauser Plot,Pitot Tube(Ludwieg等人1950; Schoenherr 1932)]。然而,很难测量高精度的皮肤摩擦,因为皮肤摩擦取决于边界层条件,并且测量值非常小。利用刘等人开发了利用发光强度的全局发光油膜方法。 (2008)和绝对的皮肤摩擦可以在若干位置使用基于点的传感器全局用校准确定。李等人。 (2020)表明,发光油膜方法的皮肤摩擦值取决于油膜厚度,并且当油厚度接近时,用克劳尔图表方法(Clauser 1956)测定的值很好地商定的值粘性子层厚度(小于五个壁单元)。在过去的20年里,油膜干涉测量方法已被广泛使用,并且在过去20年中受到了很多关注,因为它具有更高的准确性,与其他技术相比更容易使用(Naughton等,2002),但使用的油具有温度依赖性降低皮肤摩擦测量精度,需要光滑,反射表面。因此,与皮肤摩擦测量同时测量的表面温度测量对于校正温度依赖性非常重要(Zilliac等,2011)。根据Zilliac G的不确定性分析,5次的温度变化导致总不确定性的5.5%的不确定性为14.9%。虽然温度敏感涂料(TSP)可用于油温校正(Bottini等,2015),在模型表面上喷涂TSP非常耗时。一项研究使用红外点传感器来测量油温(Kurita等,2016),但传感器可以在风洞运行期间仅在一个表面点测量。

著录项

  • 来源
    《Journal of visualization》 |2021年第4期|657-664|共8页
  • 作者单位

    Aeronautical Technology Directorate Japan Aerospace Exploration Agency Chofu Tokyo 182-8522 Japan;

    Aeronautical Technology Directorate Japan Aerospace Exploration Agency Chofu Tokyo 182-8522 Japan;

    Aeronautical Technology Directorate Japan Aerospace Exploration Agency Chofu Tokyo 182-8522 Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号