...
首页> 外文期刊>Materials Science and Engineering >Functional and structural fatigue of titanium tantalum high temperature shape memory alloys (HT SMAs)
【24h】

Functional and structural fatigue of titanium tantalum high temperature shape memory alloys (HT SMAs)

机译:钛钽高温形状记忆合金(HT SMAs)的功能和结构疲劳

获取原文
获取原文并翻译 | 示例
           

摘要

Due to their high work output and good mechanical properties, actuators made from shape memory alloys (SMAs) are used in numerous applications. Unfortunately, SMAs such as nickel-titanium (Ni-Ti) can only be employed at temperatures up to about 100 ℃. Lately, high-temperature shape memory alloys (HT SMAs) have been introduced to overcome this limitation. Ternary systems based on Ni-Ti have been intensively characterized and alloys are available that can operate at elevated temperatures. However, these alloys either contain substantial amounts of expensive noble elements like platinum and palladium, or the materials are brittle. The titanium-tantalum (Ti-Ta) system has been developed to overcome these issues. Binary Ti-Ta provides relatively high M_s temperature combined with excellent workability, but it suffers from fast cyclic degradation. By alloying with third elements this drawback can be overcome: The ternary Ti-Ta-Al alloy shows overall promising properties as will be shown in the present work. In-situ thermo-mechanical cycling experiments were conducted and allowed for evaluation of the factors affecting the functional and structural fatigue of this alloy. Functional fatigue is dominated by ω-phase evolution, while structural fatigue is triggered by an interplay of ω-phase induced embrittlement and deformation constraints imposed by unsuitable texture. In addition, a concept for fatigue life extension proposed very recently for binary Ti-Ta, is demonstrated to be also applicable for the ternary Ti-Ta-Al.
机译:由于它们的高功输出和良好的机械性能,由形状记忆合金(SMA)制成的执行器被用于许多应用中。不幸的是,诸如镍钛(Ni-Ti)之类的SMA只能在最高约100℃的温度下使用。最近,高温形状记忆合金(HT SMA)被引入以克服该限制。基于Ni-Ti的三元体系已经得到了广泛的表征,并且可以使用可以在高温下运行的合金。但是,这些合金要么包含大量昂贵的贵金属元素(如铂和钯),要么材料易碎。已经开发出钛-钽(Ti-Ta)系统来克服这些问题。二元Ti-Ta可以提供较高的M_s温度和出色的可加工性,但是会遭受快速的循环降解。通过与第三种元素合金化,可以克服这一缺点:三元Ti-Ta-Al合金具有总体良好的性能,如本工作所示。进行了原位热机械循环实验,并评估了影响该合金功能和结构疲劳的因素。功能疲劳主要由ω相演变形成,而结构疲劳则由ω相引起的脆化和不适当的纹理所施加的变形约束的相互作用触发。此外,最近提出的用于二元Ti-Ta的延长疲劳寿命的概念也适用于三元Ti-Ta-Al。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号