...
首页> 外文期刊>Mechanical systems and signal processing >Parametric design optimization of e-compressor NVH using blocked forces and substructuring
【24h】

Parametric design optimization of e-compressor NVH using blocked forces and substructuring

机译:封堵力和子结构的e-Compressor NVH的参数化设计优化

获取原文
获取原文并翻译 | 示例
           

摘要

The combination of frequency based substructuring (FBS) and blocked force Transfer Path Analysis (TPA) allows to perform parametric NVH design optimizations. Blocked forces are not dependent on one specific receiver structure, in contrast to interface forces of classical TPA. Blocked forces can therefore be used as a source description in design optimization. For optimizing the assembly, different substructures are virtually coupled to each other, where each substructure is described by the most appropriate modeling approach. Frequency based substructuring (FBS) allows coupling analytical, numerical or experimental models to each other. The transfer functions of the final assembly can thus be simulated by FBS. Numerical models are used for substructures which can be simulated with high accuracy. These are parametrized for optimization. Experimental substructure models are used for substructures that are hard to simulate accurately. The application example is an electric climate compressor. Its excitation is characterized by means of blocked forces. The assembly consists of: a) a FEM model of the receiver, b) experimental models of different rubber isolators, c) a parametrized FEM model for the compressor support, and d) an analytical rigid body model for the compressor itself. The rubber isolator choice and the FEM model of the support, are iteratively optimized for minimal structure borne noise. Virtually coupling the substructures, and applying the compressors blocked forces to the assembly, makes it possible to simulate the resulting loudness for different design parameters. We discuss the formulation of an objective function and the applicability of different optimization algorithms on a minimal example first. Then we apply a genetic optimization algorithm to the objective function for the compressor design. The simulated predictions for the optimal parameters are validated with measurements on the physically built up design, including auralization of the results.
机译:基于频率的子结构(FBS)和阻塞力传输路径分析(TPA)的组合允许执行参数NVH设计优化。阻塞力不依赖于一个特定的接收器结构,与古典TPA的界面力相反。因此,阻塞力可以用作设计优化中的源描述。为了优化组件,不同的子结构实际上彼此耦合,其中每个子结构由最合适的建模方法描述。基于频率的子结构(FBS)允许互相耦合分析,数值或实验模型。因此,可以通过FBS模拟最终组件的传递函数。数值模型用于可以以高精度模拟的子结构。这些是参数化的优化。实验性次结构模型用于难以精确模拟的子结构。应用示例是电动气候压缩机。它的激发是通过阻塞力的特征。该组件包括:a)接收器的有限元模型,b)不同橡胶隔离器的实验模型,c)用于压缩机支撑的参数化有限元模型,而d)用于压缩机本身的分析刚体模型。橡胶隔离器选择和支撑的有限元模型,迭代地优化,以实现最小的结构传承噪声。实际上耦合子结构并将压缩机施加到组件上,使得可以模拟不同的设计参数的所得到的响度。我们讨论了首先在最小的例子上的目标函数和不同优化算法的适用性。然后我们将遗传优化算法应用于压缩机设计的目标函数。最佳参数的模拟预测通过对物理建立的设计进行了测量,包括结果的特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号