...
首页> 外文期刊>Mechatronics, IEEE/ASME Transactions on >Kinematically-Constrained Redundant Cable-Driven Parallel Robots: Modeling, Redundancy Analysis, and Stiffness Optimization
【24h】

Kinematically-Constrained Redundant Cable-Driven Parallel Robots: Modeling, Redundancy Analysis, and Stiffness Optimization

机译:运动受限的冗余电缆驱动并行机器人:建模,冗余分析和刚度优化

获取原文
获取原文并翻译 | 示例
           

摘要

This paper develops a general model for kinematically-constrained redundant cable-driven parallel robots (CDPRs), and studies stiffness improving effects and redundancy resolution of such robots aiming stiffness optimization to minimize their undesired perturbations under external disturbances in a desired direction. In the developed model, assuming an axially flexible model for the cables, motion equation is derived. Considering the role of constrained cables in restriction of CDPR's rotational degrees of freedom, the vibration equation of the moving platform is separated from the equation of motion. The resulted vibration equation is a linear dynamic system with a stiffness matrix formed by the cables’ tension and the constrained cables’ axial stiffness. Based on that, the substantial effects of constrained cables and the potential effects of cables’ tension on the stiffness improvement of CDPRs are shown. Accordingly, the cables’ tension redundancy problem is formulated. Redundancy resolution is studied considering the directional stiffness of the moving platform as the objective function to maximize. This objective function is derived as a linear function of cables’ redundant tensions and the corresponding redundancy problem solved by using a time-efficient method of linear programming. The developed model and the proposed redundancy resolution approach are experimentally tested on an actual warehousing robot to maximize its translational stiffness. Comparison of theoretical and experimental results demonstrates the validity of the proposed optimization approach and the effectiveness of kinematically-constrained actuation method.
机译:本文针对运动学约束的冗余电缆驱动并行机器人(CDPR)开发了一个通用模型,并研究了此类机器人的刚度改善效果和冗余分辨率,旨在进行刚度优化,以在所需方向上将外部干扰下的不良干扰降至最低。在开发的模型中,假设电缆具有轴向柔性模型,则可以得出运动方程。考虑到约束电缆在限制CDPR旋转自由度方面的作用,移动平台的振动方程与运动方程分开。产生的振动方程是一个线性动力系统,其线性矩阵由电缆的张力和受约束的电缆的轴向刚度组成。基于此,显示了受约束电缆的实质影响以及电缆张力对CDPR刚度改善的潜在影响。因此,提出了电缆的张力冗余问题。考虑移动平台的方向刚度作为最大化目标函数的冗余分辨率。该目标函数是电缆的冗余张力的线性函数,并且通过使用省时的线性编程方法解决了相应的冗余问题。在实际的仓储机器人上对开发的模型和建议的冗余解决方案进行了实验测试,以最大程度地提高其平移刚度。理论和实验结果的比较证明了所提出的优化方法的有效性以及运动学约束致动方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号