首页> 外文期刊>Mechatronics, IEEE/ASME Transactions on >Dual-Axial Motion Control of a Magnetic Levitation System Using Hall-Effect Sensors
【24h】

Dual-Axial Motion Control of a Magnetic Levitation System Using Hall-Effect Sensors

机译:使用霍尔效应传感器的磁悬浮系统的双轴运动控制

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents a new methodology to determine the position of a magnetically guided robot (MGR) in horizontal planes using magnetic flux sensors. This position determination methodology can be used independently as well as in collaboration with optical sensors in the case of the optical blockage. A combination of linear Hall-effect sensors (two sensors for each axis of motion) was employed to measure the magnetic flux in the MGR's working space. A configuration of several electromagnets was used as a source of magnetic field, and an analytical model of the system is developed. The MGR's position was determined based on the polynomial relation between the Hall-effect sensors' output and the location of the minimum magnetic potential energy point in horizontal planes. Using the cross-validation method, it was found that a fourth-order polynomial model could accurately predict the MGR's position. Experiments were conducted on a horizontal plane to validate the performance of position estimation using the magnetic flux sensing method. The accuracy of the position determination method was 0.4-mm root-mean-square errors in both the - and -direction over 8 × 8 mm working area. This paper also experimentally validates a combined optical-magnetic position determination technique for the motion control of a magnetically guided robot in optical blockage conditions as unknown environment that can be used as a promising replacement of X-ray and ultrasound techniques.
机译:本文提出了一种使用磁通量传感器确定水平面中的电磁引导机器人(MGR)位置的新方法。在光学障碍的情况下,该位置确定方法可以独立使用,也可以与光学传感器配合使用。线性霍尔效应传感器(每个运动轴两个传感器)的组合用于测量MGR工作空间中的磁通量。使用多个电磁体的配置作为磁场源,并开发了系统的分析模型。 MGR的位置是根据霍尔效应传感器的输出与水平面中最小磁势能点的位置之间的多项式关系确定的。使用交叉验证方法,发现四阶多项式模型可以准确地预测MGR的位置。在水平面上进行了实验,以验证使用磁通量感应方法进行位置估计的性能。位置确定方法的精度在8×8 mm的工作区域内-和-方向均为0.4 mm均方根误差。本文还通过实验验证了一种组合式电磁位置确定技术,该技术可以在未知环境下将光学引导条件下的电磁引导机器人进行运动控制,从而可以替代X射线和超声技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号