首页> 外文期刊>Nature >DNA-guided crystallization of colloidal nanoparticles
【24h】

DNA-guided crystallization of colloidal nanoparticles

机译:DNA引导的胶体纳米颗粒结晶

获取原文
获取原文并翻译 | 示例
           

摘要

Many nanometre-sized building blocks will readily assemble into macroscopic structures. If the process is accompanied by effective control over the interactions between the blocks and all entropic effects, then the resultant structures will be ordered with a precision hard to achieve with other fabrication methods. But it remains challenging to use self-assembly to design systems comprised of different types of building blocks-to realize novel magnetic, plasmonic and photonic metamaterials, for example. A conceptually simple idea for overcoming this problem is the use of 'encodable' interactions between building blocks; this can in principle be straightforwardly implemented using biomblecules. Strategies that use DNA programmability to control the placement of nanoparticles in one and two dimensions have irideed been demonstrated. However, our theoretical understanding of how to extend this approach to three dimensions is limited, and most experiments have yielded amorphous aggregates and only occasionally crystallites of close-packed micrometre-sized particles. Here, we report the formation of three-dimensional crystalline assemblies of gold nanoparticles mediated by interactions between complementary DNA molecules attached to the nanoparticles' surface. We find that the nanopar-ticle crystals form reversibly during heating and cooling cycles. Moreover, the body-centred-cubic lattice structure is temperature-tuneable and structurally open, with particles occupying only ~4% of the unit cell volume. We expect that our DNA-mediated crystallization approach, and the insight into DNA design requirements it has provided, will facilitate both the creation of new classes of ordered multicomponent metamaterials and the exploration of the phase behaviour of hybrid systems with addressable interactions.
机译:许多纳米级的构建基块将很容易组装成宏观结构。如果该过程伴随着对块之间相互作用和所有熵效应的有效控制,那么将以难以用其他制造方法实现的精度来订购所得结构。但是,使用自组装来设计由不同类型的构建块组成的系统仍然具有挑战性,例如实现新颖的磁性,等离子和光子超材料。解决这个问题的一个概念上简单的想法是在构件之间使用“可编码”交互。原则上,这可以使用生物分子直接实现。已经证明了利用DNA可编程性控制一维和二维纳米颗粒位置的策略。但是,我们对如何将此方法扩展到三个维度的理论理解是有限的,并且大多数实验都产生了无定形聚集体,并且偶尔会产生密堆积的微米级颗粒的微晶。在这里,我们报道了金纳米颗粒的三维晶体组装的形成,该过程由附着在纳米颗粒表面的互补DNA分子之间的相互作用介导。我们发现,纳米粒子晶体在加热和冷却循环中可逆地形成。此外,以体为中心的立方晶格结构是温度可调的,并且结构开放,颗粒仅占单位晶胞体积的约4%。我们希望我们的DNA介导的结晶方法及其对DNA设计要求的见识,将有助于创建新型的有序多组分超材料新类别,并有助于探索具有可寻址相互作用的混合系统的相态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号