首页> 外文期刊>Nature >Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation
【24h】

Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation

机译:破坏固体氧化物燃料电池阳极中甲烷氧化的扩展缺陷

获取原文
获取原文并翻译 | 示例
           

摘要

Point defects largely govern the electrochemical properties of oxides: at low defect concentrations, conductivity increases with concentration; however, at higher concentrations, defect - defect interactions start to dominate(1,2). Thus, in searching for electrochemically active materials for fuel cell anodes, high defect concentration is generally avoided. Here we describe an oxide anode formed from lanthanum-substituted strontium titanate (La-SrTiO3) in which we control the oxygen stoichiometry in order to break down the extended defect intergrowth regions and create phases with considerable disordered oxygen defects. We substitute Ti in these phases with Ga and Mn to induce redox activity and allow more flexible coordination. The material demonstrates impressive fuel cell performance using wet hydrogen at 950 degrees C. It is also important for fuel cell technology to achieve efficient electrode operation with different hydrocarbon fuels(3,4), although such fuels are more demanding than pure hydrogen. The best anode materials to date-Ni-YSZ ( yttria-stabilized zirconia) cermets(5) - suffer some disadvantages related to low tolerance to sulphur(6), carbon build-up when using hydrocarbon fuels(7) ( though device modifications and lower temperature operation can avoid this(8,9)) and volume instability on redox cycling. Our anode material is very active for methane oxidation at high temperatures, with open circuit voltages in excess of 1.2 V. The materials design concept that we use here could lead to devices that enable more-efficient energy extraction from fossil fuels and carbon-neutral fuels.
机译:点缺陷主要控制氧化物的电化学性质:在低缺陷浓度下,电导率随浓度增加;但是,在较高浓度下,缺陷-缺陷相互作用开始占主导地位(1,2)。因此,在寻找用于燃料电池阳极的电化学活性材料时,通常避免了高的缺陷浓度。在这里,我们描述了由镧取代的钛酸锶锶(La-SrTiO3)形成的氧化物阳极,在该阳极中,我们控制氧的化学计量,以破坏扩展的缺陷共生区域并创建具有大量无序氧缺陷的相。我们在这些相中用Ga和Mn替代Ti,以诱导氧化还原活性并允许更灵活的配位。该材料在950摄氏度的湿氢条件下显示出令人印象深刻的燃料电池性能。对于燃料电池技术而言,使用不同的碳氢化合物燃料实现高效的电极操作也很重要(3,4),尽管此类燃料比纯氢的要求更高。迄今为止最好的阳极材料-Ni-YSZ(氧化钇稳定的氧化锆)金属陶瓷(5)-具有一些缺点,如对硫的耐受性低(6),在使用烃类燃料时会积碳(7)(尽管设备进行了改进和较低的温度操作可以避免氧化还原循环的这种(8,9))和体积不稳定性。我们的阳极材料对于高温下的甲烷氧化非常活跃,开路电压超过1.2V。我们在这里使用的材料设计概念可能会导致设备能够更有效地从化石燃料和碳中性燃料中提取能量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号