首页> 外文期刊>Nature >Large disparity between gallium and antimony self-diffusion in gallium antimonide
【24h】

Large disparity between gallium and antimony self-diffusion in gallium antimonide

机译:镓与锑自扩散在锑化镓中的巨大差异

获取原文
获取原文并翻译 | 示例
           

摘要

The most fundamental mass transport process in solids is self-diffusion. The motion of host-lattice ('self-') atoms in solids is mediated by point defects such as vacancies or interstitial atoms, whose formation and migration enthalpies determine the kinetics of this thermally activated process. Self-diffusion studies also contribute to the understanding of the diffusion of impurities, and a quantitative understanding of self- and foreign-atom diffusion in semiconductors is central to the development of advanced electronic devices. In the past few years, self-diffusion studies have been performed successfully with isotopically controlled semiconductor heterostructures of germanium, silicon, gallium arsenide and gallium phosphide. Self-diffusion studies with isotopically controlled GaAs and GaP have been restricted to Ga self-diffusion, as only Ga has two stable isotopes, ~(69)Ga and ~(71)Ga. Here we report self-diffusion studies with an isotopically controlled multilayer structure of crystalline GaSb. Two stable isotopes exist for both Ga and Sb, allowing the simultaneous study of diffusion on both sublattices. Our experiments show that near the melting temperature, Ga diffuses more rapidly than Sb by over three orders of magnitude. This surprisingly large difference in atomic mobility requires a physical explanation going beyond standard diffusion models. Combining our data for Ga and Sb diffusion with related results for foreign-atom diffusion in GaSb (refs 8, 9), we conclude that the unusually slow Sb diffusion in GaSb is a consequence of reactions between defects on the Ga and Sb sublattices, which suppress the defects that are required for Sb diffusion.
机译:固体中最基本的质量传输过程是自扩散。固体中主体晶格('self')原子的运动是由空位或间隙原子等点缺陷介导的,它们的形成和迁移焓决定了该热活化过程的动力学。自扩散研究也有助于理解杂质的扩散,而对半导体中自原子和外来原子扩散的定量了解对于先进电子设备的发展至关重要。在过去的几年中,已经成功地进行了锗,硅,砷化镓和磷化镓的同位素控制半导体异质结构的自扩散研究。同位素控制的GaAs和GaP的自扩散研究仅限于Ga自扩散,因为只有Ga具有两个稳定的同位素〜(69)Ga和〜(71)Ga。在这里,我们报告了具有晶体GaSb同位素控制多层结构的自扩散研究。 Ga和Sb存在两个稳定的同位素,可以同时研究两个亚晶格上的扩散。我们的实验表明,在熔化温度附近,Ga的扩散速度比Sb快三个数量级。原子迁移率的这一令人惊讶的巨大差异需要超越标准扩散模型的物理解释。将我们的Ga和Sb扩散数据与GaSb中外来原子扩散的相关结果结合起来(参考文献8、9),我们得出结论,GaSb中Sb异常缓慢的扩散是Ga和Sb亚晶格缺陷之间反应的结果,这抑制Sb扩散所需的缺陷。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号