...
首页> 外文期刊>Physical review >Sputtering-induced reemergence of the topological surface state in Bi_2Se_3
【24h】

Sputtering-induced reemergence of the topological surface state in Bi_2Se_3

机译:溅射诱导Bi_2Se_3表面形貌重新出现

获取原文
获取原文并翻译 | 示例
           

摘要

We study the fate of the surface states of Bi_2Se_3 under disorder with strength larger than the bulk gap, caused by neon sputtering and nonmagnetic adsorbates. We find that neon sputtering introduces strong but dilute defects, which can be modeled by a unitary impurity distribution, whereas adsorbates, such as water vapor or carbon monoxide, are best described by Gaussian disorder. Remarkably, these two disorder types have a dramatically different effect on the surface states. Our soft x-ray angle-resolved photoemission spectroscopy (ARPES) measurements combined with numerical simulations show that unitary surface disorder pushes the Dirac state to inward quintuplet layers, burying it below an insulating surface layer. As a consequence, the surface spectral function becomes weaker but retains its quasiparticle peak. This is in contrast to Gaussian disorder, which smears out the quasiparticle peak completely. At the surface of Bi_2Se_3, neon sputtering adds additional unitary scatterers to the Gaussian disorder of the adsorbates. Since the introduced unitary disorder pushes the surface state to inward layers, the effects of Gaussian disorder are reduced. As a result the ARPES signal becomes sharper upon sputtering.
机译:我们研究了Bi_2Se_3表面态在命运下的命运,该态的强度大于体积间隙,是由氖溅射和非磁性吸附物引起的。我们发现,霓虹灯溅射会引入强而稀的缺陷,可以通过单一的杂质分布来建模,而吸附物(例如水蒸气或一氧化碳)最好用高斯紊乱来描述。值得注意的是,这两种疾病类型对表面状态的影响截然不同。我们的软X射线角度分辨光发射光谱(ARPES)测量结果与数值模拟相结合,表明单一的表面无序将Dirac态推向五联体向内,掩埋在绝缘表层之下。结果,表面光谱函数变弱,但保留了其准粒子峰。这与高斯紊乱相反,后者完全抹去了准粒子峰。在Bi_2Se_3的表面,霓虹灯溅射为吸附物的高斯紊乱增加了额外的整体散射体。由于引入的单一性无序将表面状态推向内层,因此降低了高斯无序的影响。结果,ARPES信号在溅射时变得更清晰。

著录项

  • 来源
    《Physical review》 |2016年第16期|165409.1-165409.7|共7页
  • 作者单位

    Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany;

    Physik-Institut, Universitat Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland,Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen, Switzerland;

    Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen, Switzerland,Institute of Physics, Ecole Polytechnique Federate de Lausanne, CH-1015 Lausanne, Switzerland;

    Physik-Institut, Universitat Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland,Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen, Switzerland;

    Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen, Switzerland;

    Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen, Switzerland;

    Department of Physics and Astronomy, Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark;

    Department of Physics and Astronomy, Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark;

    Department of Physics and Astronomy, Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark;

    Physik-Institut, Universitat Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland;

    Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany;

    Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen, Switzerland,Institute of Physics, Ecole Polytechnique Federate de Lausanne, CH-1015 Lausanne, Switzerland;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号