...
首页> 外文期刊>Physical review >Manganese 3×3 and 3~(1/2) × 3~(1/2)-R30° structures and structural phase transition on ω-GaN(0001) studied by scanning tunneling microscopy and first-principles theory
【24h】

Manganese 3×3 and 3~(1/2) × 3~(1/2)-R30° structures and structural phase transition on ω-GaN(0001) studied by scanning tunneling microscopy and first-principles theory

机译:用扫描隧道显微镜和第一性原理研究了锰3×3和3〜(1/2)×3〜(1/2)-R30°在ω-GaN(0001)上的结构和结构相变

获取原文
获取原文并翻译 | 示例
           

摘要

Manganese deposited on the N-polar face of wurtzite gallium nitride [GaN (0001)] results in two unique surface reconstructions, depending on the deposition temperature. At lower temperature (less than 105℃), it is found that a metastable 3×3 structure forms. Mild annealing of this Mn 3×3 structure leads to an irreversible phase transition to a different, much more stable 3~(1/2) × 3~(1/2)-R30° structure which can withstand high-temperature annealing. Scanning tunneling microscopy (STM) and reflection high-energy electron diffraction data are compared with results from first-principles theoretical calculations. Theory finds a lowest-energy model for the 3 × 3 structure consisting of Mn trimers bonded to the Ga adlayer atoms but not with N atoms. The lowest-energy model for the more stable 3~(1/2) × 3~(1/2)-R30° structure involves Mn atoms substituting for Ga within the Ga adlayer and thus bonding with N atoms. Tersoff-Hamman simulations of the resulting lowest-energy structural models are found to be in very good agreement with the experimental STM images.
机译:沉积在纤锌矿氮化镓[GaN(0001)]的N极性面上的锰会导致两种独特的表面重建,具体取决于沉积温度。在较低的温度(低于105℃)下,发现形成了亚稳的3×3结构。 Mn 3×3结构的温和退火会导致不可逆的相变,从而转变为可以承受高温退火的不同,更稳定的3〜(1/2)×3〜(1/2)-R30°结构。将扫描隧道显微镜(STM)和反射高能电子衍射数据与第一原理理论计算的结果进行了比较。理论发现3×3结构的最低能量模型是由与Ga原子原子结合但不与N原子结合的Mn三聚体组成的。更稳定的3〜(1/2)×3〜(1/2)-R30°结构的最低能级模型涉及Mn原子取代Ga掺杂层中的Ga并因此与N原子键合。发现所产生的最低能量的结构模型的Tersoff-Hamman模拟与实验STM图像非常吻合。

著录项

  • 来源
    《Physical review》 |2013年第16期|165426.1-165426.11|共11页
  • 作者单位

    Nanoscale and Quantum Phenomena Institute, Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA,Intel Corporation, Hillsboro, OR 97123;

    Nanoscale and Quantum Phenomena Institute, Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA,Seagate Technologies, 47010 Kato Rd., Fremont, CA 94538;

    Nanoscale and Quantum Phenomena Institute, Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA;

    Nanoscale and Quantum Phenomena Institute, Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA;

    Nanoscale and Quantum Phenomena Institute, Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA,University of Oregon, 1254 Franklin Blvd., Eugene, OR 97403;

    Nanoscale and Quantum Phenomena Institute, Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA,King Fahd University, P. O. Box 1821, Dhahran, 31261, Saudi Arabia;

    Nanoscale and Quantum Phenomena Institute, Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA;

    Centro Atomico Constituyentes, GIyA, CNEA, San Martin, Buenos Aires, Argentina;

    Centro Atomico Constituyentes, GIyA, CNEA, San Martin, Buenos Aires, Argentina;

    Centre d'Investigacio en Nanociencia i Nanotecnologia - CIN2 (CS/C-ICN), Campus UAB, 08193 Bellaterra, Barcelona, Spain;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    phase transitions and critical phenomena; scanning tunneling microscopy (including chemistry induced with STM); magnetic semiconductors;

    机译:相变和临界现象;扫描隧道显微镜(包括用STM诱导的化学反应);磁性半导体;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号