...
首页> 外文期刊>Polymer Degradation and Stability >Perspectives in the design of zein-based polymeric delivery systems with programmed wear down for sustainable agricultural applications
【24h】

Perspectives in the design of zein-based polymeric delivery systems with programmed wear down for sustainable agricultural applications

机译:玉米醇溶蛋白为基础的聚合物输送系统的设计前景与程序化磨损以实现可持续农业应用

获取原文
获取原文并翻译 | 示例
           

摘要

Design of nanostructured systems for pesticide delivery allows the implementation of a rational and sustainable use of these chemicals. Zein nanoparticles (ZNPs) enable extended foliar adhesion, as well as prolonged and controlled release of the entrapped agrochemical. The present study aimed to investigate degradation of ZNPs with various surface properties under environmentally relevant conditions. Accelerated degradation studies were performed on freeze-dried ZNPs synthesized with different cationic and non-ionic surfactants. These polymeric particles dispersed in alkaline media (pH = 9) revealed hydrodynamic diameters ranging between 210.6 and 297.3 nm and negative surface charges from -443 mV to -34.56 my. Degradation profiles of the studied particles were assessed within the pH limits of soils under agricultural exploitation (pH 4 and 9). The time-dependent decrease of the parent protein fractions was monitored by capillary gel electrophoresis, where the rate constants of the hydrolytic degradation allows the estimation of ZNPs' persistence at any temperature of interest. Results showed that in alkaline media promotes a faster chemical degradation of ZNPs (total at 20 degrees C in similar to 3918 days at pH = 4 vs. 205 days at pH = 9), however the nature of the used surfactant may completely reverse the observed trend. Identifying the technological variables that impact their surface chemistry and susceptibility towards hydrolytic degradation, opens new perspectives in the programmed degradation of ZNPs, which may ensure a safer and more sustainable use of these nanodelivery systems. Although chemometric models were able to assess quantitative correlations between recorded physical properties of the ZNPs and the estimated time necessary for their full degradation, further studies are needed to elucidate the causality between the nature of used surfactants and estimated degradation times in aqueous media. (C) 2018 Elsevier Ltd. All rights reserved.
机译:农药输送的纳米结构系统的设计允许对这些化学品进行合理和可持续的使用。玉米醇溶蛋白纳米颗粒(ZNP)可以延长叶面的附着力,并延长和控制所捕获农用化学品的释放。本研究旨在研究环境相关条件下具有各种表面性质的ZNP的降解。对使用不同阳离子和非离子表面活性剂合成的冷冻干燥ZNP进行了加速降解研究。这些分散在碱性介质(pH = 9)中的聚合物颗粒的流体力学直径范围为210.6至297.3 nm,负表面电荷为-443 mV至-34.56 my。在农业开发条件下(土壤pH 4和9),在土壤的pH范围内评估了研究颗粒的降解情况。通过毛细管凝胶电泳监测亲本蛋白质级分的时间依赖性降低,其中水解降解的速率常数允许估算ZNP在任何目标温度下的持久性。结果表明,在碱性介质中可促进ZNP的更快化学降解(在20摄氏度下的总降解时间与pH = 4时的3918天相比,与pH = 9的205天相似),但是所用表面活性剂的性质可能会完全逆转所观察到的趋势。识别影响其表面化学性质和对水解降解的敏感性的技术变量,为ZNP的计划降解开辟了新的视角,这可以确保更安全,更可持续地使用这些纳米传递系统。尽管化学计量学模型能够评估ZNP的记录的物理性质与其完全降解所需的估计时间之间的定量相关性,但仍需要进一步研究以阐明所用表面活性剂的性质与水性介质中估计的降解时间之间的因果关系。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Polymer Degradation and Stability》 |2018年第9期|130-135|共6页
  • 作者单位

    Iuliu Hatieganu Univ Med & Pharm, Fac Pharm, Analyt Chem Dept, 4 Louis Pasteur St, Cluj Napoca 400349, Romania;

    Iuliu Hatieganu Univ Med & Pharm, Fac Pharm, Analyt Chem Dept, 4 Louis Pasteur St, Cluj Napoca 400349, Romania;

    Iuliu Hatieganu Univ Med & Pharm, Fac Pharm, Analyt Chem Dept, 4 Louis Pasteur St, Cluj Napoca 400349, Romania;

    Louisiana State Univ, Dept Biol & Agr Engn, Baton Rouge, LA 70803 USA;

    Louisiana State Univ, Dept Biol & Agr Engn, Baton Rouge, LA 70803 USA;

    Iuliu Hatieganu Univ Med & Pharm, Fac Pharm, Analyt Chem Dept, 4 Louis Pasteur St, Cluj Napoca 400349, Romania;

    Iuliu Hatieganu Univ Med & Pharm, Fac Pharm, Analyt Chem Dept, 4 Louis Pasteur St, Cluj Napoca 400349, Romania;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Zein; Surfactants; Nanodelivery systems; Degradation; Capillary electrophoresis;

    机译:玉米醇溶蛋白;表面活性剂;负递送系统;降解;毛细管电泳;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号