首页> 外文期刊>Proceedings of the Institution of Mechanical Engineers. Part K, Journal of Multi-body Dynamics >Implementation of electronically controlled pneumatic brake formulation in longitudinal train dynamics algorithms
【24h】

Implementation of electronically controlled pneumatic brake formulation in longitudinal train dynamics algorithms

机译:纵向列车动力学算法中电控气动制动器公式的实现

获取原文
获取原文并翻译 | 示例
           

摘要

The main goal of this investigation is to integrate an electronically controlled pneumatic (ECP) brake model with efficient longitudinal train force algorithms based on the trajectory coordinate formulations. The ECP brake model, developed in this investigation consists of the train line (cable), locomotive automatic brake valve, air brake pipe, and ECP manifold. The train line, which covers the entire length of the train, allows the brake commands to be received by the car simultaneously. While pneumatic pressure is used to generate the braking forces, the brake pipe is no longer used to provide the brake level commands. Instead, the brake pipes are used to provide a continuous supply of compressed air stored in a reservoir mounted on each railcar. Using the ECP system to apply the brakes uniformly and instantaneously gives better train control, shortens the stopping distances, and leads to a lower risk of derailment. In this investigation, the fluid continuity and momentum equations are used to develop the governing air pressure flow equations. These partial differential equations are converted to a set of ordinary differential equations using the finite element method leading to an air brake force model that accounts for the effect of the air flow in long train pipes as well as the effect of leakage and branch pipe flows. The car brake forces are applied to the wheels using the ECP manifold located in each car. The ECP manifold used in this investigation has four valves: cut-off valve, vent valve, auxiliary valve, and emergency valve. The ECP manifold is connected to three main pneumatic components: the auxiliary reservoir, the emergency reservoir, and the brake cylinder. The reservoirs serve as the main storage of the pressurized air, while the brake cylinder and other mechanical components such as the rigging and the brake shoes transmit the brake force to the wheels. In this investigation, a mathematical model of the ECP manifold and its components is developed. The relationship between the main components of the ECP brake system and the train dynamics is discussed, and the final set of differential equations that integrates the ECP brake and train dynamics is presented. Different simulation scenarios are considered in this study in order to investigate the effect of the brake forces on the train longitudinal dynamics in the case of different braking scenarios. The performance of the developed ECP brake system is compared with the Association of American Railroads safety and operation standards, and with experimental results published in the literature.
机译:这项研究的主要目标是将电子控制气动(ECP)制动模型与基于轨迹坐标公式的有效纵向列车力算法相集成。在此调查中开发的ECP制动模型包括火车线路(电缆),机车自动制动阀,空气制动管和ECP歧管。覆盖整个火车长度的火车线允许轿厢同时接收制动命令。当使用气压产生制动力时,不再使用制动管来提供制动级别命令。取而代之的是,制动管用于提供连续的压缩空气供应,该压缩空气存储在安装在每个轨道车上的储油罐中。使用ECP系统均匀,瞬时地施加制动器,可以更好地控制列车,缩短停止距离,并降低脱轨的风险。在这项研究中,使用流体连续性和动量方程式来开发控制性空气压力方程式。使用有限元方法将这些偏微分方程转换为一组常微分方程,从而生成一个空气制动力模型,该模型考虑了长列管内气流的影响以及泄漏和支管流的影响。使用每个轿厢中的ECP歧管将轿厢制动力施加到车轮上。本研究中使用的ECP歧管具有四个阀:截止阀,排气阀,辅助阀和应急阀。 ECP歧管连接到三个主要的气动部件:辅助油箱,紧急油箱和制动缸。储存器用作压缩空气的主要储存器,而制动缸和其他机械部件(例如索具和制动蹄)则将制动力传递给车轮。在这项研究中,开发了ECP歧管及其组件的数学模型。讨论了ECP制动系统的主要部件与列车动力学之间的关系,并提出了将ECP制动和列车动力学集成在一起的最终微分方程组。在这项研究中考虑了不同的模拟方案,以便研究在不同制动方案下制动力对列车纵向动力学的影响。将开发的ECP制动系统的性能与美国铁路协会的安全和运行标准进行了比较,并与文献中发表的实验结果进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号