...
首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Suppression of Arabidopsis vesicle-SNARE expression inhibited fusion of H2O2 containing vesicles with tonoplast and increased salt tolerance
【24h】

Suppression of Arabidopsis vesicle-SNARE expression inhibited fusion of H2O2 containing vesicles with tonoplast and increased salt tolerance

机译:拟南芥囊泡-SNARE表达的抑制抑制了含H2O2的囊泡与液泡塑料的融合并提高了耐盐性

获取原文
获取原文并翻译 | 示例
           

摘要

Intracellular vesicle trafficking performs essential functions in eukaryotic cells, such as membrane trafficking and delivery of molecules to their destinations. A major endocytotic route in plants is vesicle trafficking to the vacuole that plays an important role in plant salt tolerance. The final step in this pathway is mediated by the AtVAMP7C family of vesicle soluble N-ethylmaleimide-sensitive factor attachment protein receptors (v-SNAREs) that carry out the vesicle fusion with the tonoplast. Exposure to high-salt conditions causes immediate ionic and osmotic stresses, followed by production of reactive oxygen species. Here, we show that the reactive oxygen species are produced intracellularly, in endosomes that were targeted to the central vacuole. Suppression of the AtVAMP7C genes expression by antisense AtVAMP711 gene or in mutants of this family inhibited fusion of H2O2-containing vesicles with the tonoplast, which resulted in formation of H2O2-containing megavesicles that remained in the cytoplasm. The antisense and mutant plants exhibited improved vacuolar functions, such as maintenance of Delta pH, reduced release of calcium from the vacuole, and greatly improved plant salt tolerance. The antisense plants exhibited increased calcium-dependent protein kinase activity upon salt stress. Improved vacuolar ATPase activity during oxidative stress also was observed in a yeast system, in a Delta Vamp7 knockout strain. Interestingly, a microarray-based analysis of the AtVAMP7C genes showed a strong down-regulation of most genes in wild-type roots during salt stress, suggesting an evolutionary molecular adaptation of the vacuolar trafficking.
机译:细胞内小泡运输在真核细胞中执行基本功能,例如膜运输和将分子递送至其目的地。植物中的主要胞吞途径是囊泡运输到液泡,在植物的耐盐性中起重要作用。该途径的最后一步是由AtVAMP7C家族的囊泡可溶性N-乙基马来酰亚胺敏感因子附着蛋白受体(v-SNAREs)介导的,该受体与囊泡液一起进行囊泡融合。暴露于高盐条件下会导致立即的离子和渗透应力,随后产生活性氧。在这里,我们表明,活性氧是在细胞内产生的,在靶向中央液泡的内体中。反义AtVAMP711基因或该家族突变体对AtVAMP7C基因表达的抑制作用抑制了含H2O2的囊泡与液泡膜的融合,导致形成了残留在细胞质中的含H2O2的大囊泡。反义和突变植物显示出改善的液泡功能,例如维持Delta pH,减少钙从液泡中的释放以及大大提高了植物的耐盐性。反义植物在盐胁迫下表现出增加的钙依赖性蛋白激酶活性。在Delta Vamp7基因敲除菌株的酵母系统中也观察到了氧化应激期间液泡ATPase活性的提高。有趣的是,对AtVAMP7C基因进行的基于微阵列的分析显示,盐胁迫期间野生型根中的大多数基因均强烈下调,表明液泡运输的进化分子适应性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号